期刊文献+

Adaptive Multi-modal Fusion Instance Segmentation for CAEVs in Complex Conditions:Dataset,Framework and Verifications

下载PDF
导出
摘要 Current works of environmental perception for connected autonomous electrified vehicles(CAEVs)mainly focus on the object detection task in good weather and illumination conditions,they often perform poorly in adverse scenarios and have a vague scene parsing ability.This paper aims to develop an end-to-end sharpening mixture of experts(SMoE)fusion framework to improve the robustness and accuracy of the perception systems for CAEVs in complex illumination and weather conditions.Three original contributions make our work distinctive from the existing relevant literature.The Complex KITTI dataset is introduced which consists of 7481 pairs of modified KITTI RGB images and the generated LiDAR dense depth maps,and this dataset is fine annotated in instance-level with the proposed semi-automatic annotation method.The SMoE fusion approach is devised to adaptively learn the robust kernels from complementary modalities.Comprehensive comparative experiments are implemented,and the results show that the proposed SMoE framework yield significant improvements over the other fusion techniques in adverse environmental conditions.This research proposes a SMoE fusion framework to improve the scene parsing ability of the perception systems for CAEVs in adverse conditions.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期96-106,共11页 中国机械工程学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121,51975103,51905095) National Natural Science Foundation of Jiangsu Province(Grant No.BK20180401).
  • 相关文献

参考文献4

二级参考文献53

  • 1No hands across America, vision and autonomous systems center at Carnegie Mellon University [EB/OL]. [1999-03-20]. http: //www.ri.cmu.edulresearch_project_ detail.html?proj ect_id= 178& menu id=261.
  • 2LAUER M, GERRITS A. Next steps for the grand cooperative driving challenge [ITS Events] [J]. Intelligent Transportation Systems Magazine, IEEE , 2009, 1(4): 24-32.
  • 3VIAC- the VisLab intercontinental autonomouschallcnge [EB/OL]. [2011-03-05]. http: //viac.vislab.it.
  • 4GUIZZO E. How google's self-driving car works [EB/OL]. [2011-10-18]. http : //spectrum.ieee.org/automaton/ robotics/artificial-intelligence/how-google-self-driving-ca r-works.
  • 5BEHRINGER R, SUNDARESWARAN S, GREGORY B, et al. The DARPA grand challenge - development of an autonomous vehicle[C]//2004 IEEE Intelligent Vehicles Symposium, 14-17 June 2004, Parma, Italy, 2004: 226-231.
  • 6MILLER I, LUPASHIN S, ZYCH N. Comell University's 2005 DARPA grand challenge entry[J]. Journal of Field Robotics, 2006, 23(8): 625-652.
  • 7URMSON C, ANHALT J, BAGNELL D. Autonomous driving in urban environments: Boss and the urban challenge[J]. Journal of Field Robotics, 2008, 25(8): 425-466.
  • 8XIONG Guangming, ZHOU Peiyun, ZHOU Shengyan. Autonomous driving of intelligent vehicle BIT in 2009 future challenge of China[C]//2010 IEEE Intelligent Vehicles Symposium, Proceedings. 21-24 June 2010, San Diego, CA, USA, 2010: 1049- 1053.
  • 9GONG .Jianwei, JIN Xiaolong, JIANG Yan, et al. BIT. An autonomously driving vehicle for urban environment [J]. Communications of CAA, 2010, 32(2): 43-51.
  • 10LEONARD J, BARRETT D, HOW J, et al. Team MIT urban challenge technical report[R]. Boston, USA: Massachusetts Institute of Technology Computer Scienceand Artificial Imelligenee Laboratory, MIT-CSAIL-TR- 2007-058.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部