期刊文献+

联合迁移学习和深度学习的侧扫声呐沉船识别方法 被引量:4

Side Scan Sonar Combined With Transfer Learning and Deep Learning Shipwreck Identification Method
下载PDF
导出
摘要 针对当前沉船侧扫声呐数据样本少、无法大量获取有标记的数据、小样本数据用于卷积神经网络模型正确识别率较低的问题,提出一种联合迁移学习和深度学习的沉船侧扫声呐图像识别方法。在不采用迁移学习的情况下,用沉船声呐样本数据集训练网络,将结果保存作为对照组。应用弱相关数据集,对网络进行训练,然后将网络参数迁移到新网络中,再使用沉船声呐样本数据集训练;应用强相关数据集重复上述步骤。在AlexNet网络结构上进行试验,试验结果表明:在未迁移的情况下,正确率为70.58%;应用弱相关数据集训练,正确率为74.51%;应用强相关数据集训练,正确率为80.39%。试验证明,迁移学习算法有利于提高小样本情况下卷积神经网络的正确率、泛化性。 Aiming at the problem that the current sunken side scan sonar data samples are few and it is impossible to obtain a large amount of labeled data,the small sample data is used for the problem of low correct recognition rate of the convolutional neural network model,and a joint migration learning and deep learning sunken side scan sonar is proposed.In the case of not using migration learning,use the shipwreck sonar sample data set to train the network and save the result as a control group;use the weakly correlated data set to train the network,and then transfer the net⁃work parameters to the new network,and then use the shipwreck sonar Sample data set training;apply the strong cor⁃relation data set to repeat the above steps.Experiments on the AlexNet network structure show that the accuracy rate is 70.58%without migration;the accuracy rate is 74.51%for training with weakly correlated data sets;and 80.39%for training with strong correlated data sets.Experiments show that the transfer learning algorithm is beneficial to im⁃prove the accuracy and generalization of the convolutional neural network in the case of small samples.
作者 武铄 王晓 张丹阳 周海波 陈家儒 WU Shuo;WANG Xiao;ZHANG Danyang;ZHOU Haibo;CHEN Jiaru(Jiangsu Ocean University,School of Marine Technology and Geomatics,Lianyungang Jiangsu 222005)
出处 《河南科技》 2021年第36期36-40,共5页 Henan Science and Technology
基金 国家自然科学青年基金(41806117)。
关键词 侧扫声呐 深度学习 迁移学习 卷积神经网络 side scan sonar deep learning transfer learning convolutional neural network
  • 相关文献

参考文献5

二级参考文献137

  • 1王淼,胡本强,辛万光,戚丽.我国海洋环境污染的现状、成因与治理[J].中国海洋大学学报(社会科学版),2006(5):1-6. 被引量:82
  • 2潘国富,付晓明,荀诤慷,刘奎.侧扫声纳在海底光缆维护工程中的应用[J].工程地球物理学报,2004,1(5):389-394. 被引量:20
  • 3周兴华,姜小俊,史永忠.侧扫声纳和浅地层剖面仪在杭州湾海底管线检测中的应用[J].海洋测绘,2007,27(4):64-67. 被引量:52
  • 4HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 6VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 7LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 8TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 9SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 10TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.

共引文献712

同被引文献42

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部