期刊文献+

双层乳胶气球的高空平漂机理及垂直轨迹模拟

High-altitude floating mechanism and vertical trajectory simulation of double-layer latex balloon
下载PDF
导出
摘要 双层乳胶气球克服了单层乳胶气球的缺点,可以在高空平漂以实现持续气象观测,但是其高空平漂受多因素影响比较复杂,特别是气球充气量主要依赖工程经验,施放成功率不高,亟需提供理论指导。通过试验数据证明了浮重平衡是双层乳胶气球实现高空平漂的必要条件,推导得出内、外球氢气充气量和昼夜温度变化对其运动的影响;建立了双层乳胶气球的几何模型和动力学模型,结合实地施放试验,对其升空和平漂过程轨迹进行模拟,由此探究了内、外球充气量对平漂高度的影响。研究结果表明:内球充气量是决定平漂高度的主要因素,并受昼夜温度变化影响,当内、外球规格分别为750 g、500 g,负载约1 kg时,内球拉力每增大或减小0.04 kg,最终平漂高度将对应升高或降低约5 km,而外球充气量对其平漂高度无影响。 The double-layer latex balloon overcomes the shortcomings of the single-layer latex balloon and can float at high altitude with long time to achieve continuous meteorological observation.However,its high-altitude floating mechanism influenced by multiple factors is much more complicated.In particular,the determination of the Amount of Hydrogen(AoH)needed mainly depends on engineering experience currently,resulting in a high probability of failure,so it is urgent to study the theory behind phenomenon.The test data prove that the balance of buoyancy and gravity is a necessary condition for the double-layer latex balloon to achieve high-altitude floating.The influences of the AoH in inner and outer balloon,and diurnal temperature variation on the motion of the balloon were derived.The geometric model and the dynamic model of the double-layer latex balloon were established.Combined with the test data of balloon release process,the trajectories during ascent and horizontal floating process were simulated.The influence of the AoH on the floating altitude was explored,and it is proved that the AoH in inner balloon is the key factor that determines the floating altitude,and is affected by the diurnal temperature variation.When the operating load is about 1 kg and the inner and outer balloon specifications are set to 750 g and 500 g respectively,the ultimate horizontal floating altitude will increase or decrease by around 5 km for every 0.04 kg weight change in pull force of inner balloon,while the AoH in outer balloon has no effect on its floating altitude.
作者 何红 朱华健 谌志鹏 肖迪娥 潘显智 李凡珠 HE Hong;ZHU Huajian;SHEN Zhipeng;XIAO Di'e;PAN Xianzhi;LI Fanzhu(College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China;State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology,Beijing 100029,China;Hunan Key Laboratory of Near-spare Meteo-halloon Materials and Technology,Zhuzhou Rubber Research&Design Institute Co.,Ltd.,Zhuzhou 412000,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第12期2650-2656,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家重点研发计划(2018YFC1506202)。
关键词 双层乳胶气球 高空平漂 充气量 昼夜温度变化 垂直轨迹 double-layer latex balloon high-altitude floating amount of hydrogen diurnal temperature variation vertical trajectory
  • 相关文献

参考文献5

二级参考文献38

  • 1王彦广,李健全,李勇,姚伟.近空间飞行器的特点及其应用前景[J].航天器工程,2007,16(1):50-57. 被引量:63
  • 2Colozza A. Initial feasibility assessment of a high altitude long- endurance airship [ R ]. NASA/CR-2003 -212724,2003.
  • 3Colozza A, Dolce J L. High-altitude long-endurance airships for coastal surveillance [ R ]. NASA/TM -2005-213427,2005.
  • 4Harada K, Eguchi K, Sano M, et al. Experimental study of ther- mal modeling for stratospheric platform airships [ R ]. AIAA 2003-6833,2005.
  • 5Kreider J F. Mathematical of high altitude balloon performance [ R]. A1AA 75-1385,1975.
  • 6Cathey H M. Scientific balloon effective radiative properties[ J]. Advances in Space Research, 1998,21 ( 7 ) :979 - 982.
  • 7Cathey H M. Advances in the thermal analysis of scientific bal- loons [ R ]. AIAA 1996-9605,1996.
  • 8Farley R E. Balloon ascent:3-D simulation tool for the ascent and float of high altitude balloons[ R]. AIAA 2005-7412,2005.
  • 9侯增祺,胡金刚.航天器热控制技术:原理及其运用[M].北京:中国科技出版社,2007.
  • 10Goswami D Y, Kreith F, Kreider J F. Principles of solar engi- neering [ M ]. Philadelphia, PA : Tag lor Francis, 1978.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部