期刊文献+

探讨基于卷积神经网络对颅底骨折CT图像精准诊断的应用价值 被引量:2

The Application Value of Accurate Diagnosis of CT Image of Skull Base Fractures based on Convolutional Neural Network
下载PDF
导出
摘要 目的:探讨卷积神经网络(CNN)在颅底骨折CT诊断的应用价值。方法:回顾性搜集3 100例颅底骨折患者及2 467例正常患者的颅骨CT图像数据,经纳排标准筛选,最终选用2 488例颅底骨折及1 628例正常患者的颅底CT图像数据。对CT图像进行骨折标注后,随机分配训练集和测试集后。通过CNN构建颅骨区域识别算法模型和颅骨骨折检测算法模型,随后在测试中以颅底骨折区域识别和头颅骨折、颅底骨折对模型进行验证,验证指标为精准率(precision)、召回率(recall)、平均诊断耗时;与人工组(低年资放射科医师)测试进行诊断效能对比。结果:通过CNN运算获得的稳定模型后进行测试对比,结果显示全颅底区域骨折、前、中、后颅底骨折精准度均<0.5,低于人工组(均> 0.63);召回率> 0.89,均优于人工组(均<0.8);平均诊断时间为(3.12±2.67)s,明显少于人工组诊断时间。分别在颅底骨折区域测试中,精准度率:前颅底>中颅底>后颅底,召回率:中颅底>后颅底>前颅底。结论:基于CNN颅底骨折算法模型对于颅脑外伤患者CT诊断颅底骨折在召回率、诊断耗时均优于人工测试结果,在辅助临床诊断、降低漏诊及诊断耗时方面具有一定的价值。 Objective: To explore the application value of convolutional neural network(CNN) in CT diagnosis of skull base fractures. Methods: The skull CT image data of 3100 patients with skull base fractures and 2 467 normal patients was collected retrospectively. After the standard nanofiltration and actual model calculation, the skull base CT image data of 2 488 patients with skull base fractures and 1 628 normal patients were selected. The CT images were labeled and randomly assigned into training set and test set. The skull area discrimination algorithm model and skull base fractures detection algorithm model were established by CNN, then we performed verification on the models through skull base area discrimination, skull fractures and skull base fractures in the test. The detection indexes included precision, recall and average diagnosis time consumption. We carried out comparisons of diagnostic efficacy with the artificial group(junior radiologist) test. Results: We carried out test comparisons on the steady models obtained by CNN algorithm, the results showed that the accuracy of the whole skull base fractures(including the anterior, middle and posterior skull base fractures) was less than 0.5, which was lower than that of the artificial group(all higher than 0.63);The recall rate > 0.89 was better than that of the artificial group(all < 0.8);The average diagnosis time was(3.12 ±67)s, significantly less than that of artificial group. In the area test of skull base fractures, the accuracy rate was anterior skull base > middle skull base > posterior skull base while the recall rate was middle skull base > posterior skull base > anterior skull base.Conclusion: The algorithm model of skull base fractures based on CNN is superior to the artificial test results in recall rate and diagnosis time consumption for CT diagnosis of skull base fractures in patients with craniocerebral trauma, which has certain value in assisting clinical diagnosis, reducing missed diagnosis and diagnosis time consumption.
作者 黄冬云 夏军 林煜文 陈家宽 陈海斌 HUANG Dongyun;XIA Jun;LIN Yuwen;CHEN Jiakuan;CHEN Haibin(Department of Radiology,Second Person Hospital,Longgang District,Shenzhen 518001,China;Department of Radiology,Shenzhen Second People’s Hospital,Shenzhen 518001,China;Guangzhou Baishi Medical Co.,Ltd.Guangzhou 510000,China)
出处 《CT理论与应用研究(中英文)》 2021年第6期769-776,共8页 Computerized Tomography Theory and Applications
基金 深圳市龙岗区医疗卫生科技计划项目(基于RefineNet卷积神经网络对CT颅底骨折精准诊断的应用价值(LGKCYLWS2019000384))。
关键词 卷积神经网络 TinyNet 颅底骨折 CT 深度学习 convolutional neural networks TinyNet skull base fractures CT deep learning
  • 相关文献

参考文献3

二级参考文献23

  • 1郑粤军.窗口技术在CT检查的应用[J].医用放射技术杂志,2005(5):1-2. 被引量:1
  • 2赵成之,陈建良.急性颅脑损伤的流行病学研究进展[J].中华神经医学杂志,2006,5(3):319-321. 被引量:37
  • 3黄思兴,李生彦,张先国,孔斌,朱亚立,刘宽林.成都地区道路交通事故致残人员流行病学调查[J].法医学杂志,2007,23(4):269-273. 被引量:4
  • 4Gerhart KA, Mellick DC, Weintraub AH. Vionlence - re- lated traumatic brain injury population - based study. JTrauma, 2003,55(6) :1045 - 1053.
  • 5Meyer AA. Death and disability from injury:a global chal- lenge. J Trauma, 1998, 44(1):1- 12.
  • 6韩文朝,申五一,主编.现代交通创伤学,第1版,北京,北京医科大学出版社,2000,1—3.
  • 7Luukinen H, Viramo P, Herala M, et al. Fall - related brain injuriesand the risk of dementia in elderly people:a popula- tion - based study. EurJ Neurol,2005,12 (2) : 86 - 92.
  • 8Cirera E, Plasencia A, Ferrando J. factors associated with sevenityand hospital admission of motor - vehicle injury ca- ses in a southem European urban area. Eur Epidemiol, 2001,17 (3) :301 - 308.
  • 9Burt CW, Finggerhut LA. Injury visits to hospital emergency departments:United States, 1992- 1995. Vital Health Stat 13,1998, (131) :1 -76.
  • 10Ghani E, Nadeem M, Bano A, et al. Road traffic accidents as a major contributor to neurosurgicalmortality in adults. Coil Physicians Surg Pak ,2003,13 ( 3 ) : 143 - 145.

共引文献31

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部