期刊文献+

微生物的胞外电子传递界面 被引量:4

The interface of microbial extracellular electron transfer
下载PDF
导出
摘要 微生物胞外电子传递(Extracellular electron transfer,EET)在地球生物化学循环、生态修复、废水处理以及资源再生等领域发挥着重要作用.自然界中胞外电子传递的界面性质各异,导致反应速率和效率明显不同.本文介绍了胞外电子传递过程涉及的无机物-微生物界面和有机物-微生物界面,总结了反应物表面性质与微生物的互作规律:反应物表面的氧化还原活性决定其电子接受/释放能力,从根本上影响胞外电子传递发生的可能性;微生物与反应物之间的氧化还原电势差决定了电子传递方向;表面电荷、润湿性、表面粗糙度、孔隙度和生物相容性综合影响微生物在固体表面的吸附、粘附、生物膜生长及活性,从而影响胞外电子传递的效率;导电性影响电子传输速率.本综述旨在通过对比各种反应界面,认识不同反应物界面间的共性与特性.这些认识有助于系统理解微生物胞外电子传递与环境的关系,为其在工程中的应用提供理论指导. Microbial extracellular electron transfer(EET) plays an important role in the fields of earth biochemical cycle,ecological restoration,wastewater treatment and resource regeneration. In nature, the interface properties of extracellular electron transfer are different, resulting in significantly different reaction rates and efficiencies. In this article, we introduce the microbeinorganic substance interface and the microbe-organic substance interface involved in the process of extracellular electron transfer,and summarize the interaction rules between surface properties and microorganisms. The redox activities of reactants determine its electron accepting and releasing abilities, and fundamentally affects the possibility of extracellular electron transfer. The redox potential difference between the microorganism and reactants determines the direction of electron transfer. The surface charge,wettability,surface roughness,porosity and biocompatibility of the solid surface comprehensively affect the adsorption, adhesion, biofilm growth and activity of microorganisms on the solid-phase surface,thereby affecting the efficiency of extracellular electron transfer. The conductivity of the solid interface affects the electron transfer rate. This review aims to understand the commonalities and characteristics of different reaction interfaces by comparing various reaction interfaces. These understandings help to systematically understand the relationship between the EET behavior of microorganisms and environment,provide theoretical guidance for its application in engineering.
作者 林霄涵 杨帆 赵峰 LING Xiaohan;YANG Fan;ZHAO Feng(CAS Key Laboratory of Urban Pollutant Conversion,Institute of Urban Environment,Chinese Academy of Sciences,Xiamen,361021,China;University of Chinese Academy of Sciences,Beijing,100049,China)
出处 《环境化学》 CAS CSCD 北大核心 2021年第11期3283-3296,共14页 Environmental Chemistry
基金 国家杰出青年科学基金(22025603) 国家自然科学基金(21777155)资助。
关键词 胞外电子传递 界面 表面电荷 润湿性 亲疏水 孔隙度 extracellular electron transfer interface surface charge wettability hydrophilicity and hydrophobicity porosity
  • 相关文献

参考文献12

二级参考文献223

  • 1李益民,张华,李海洋.羟基金属柱撑膨润土吸附氟的性能研究[J].环境污染与防治,2006,28(1):1-4. 被引量:20
  • 2张秋菊,王晓,陈建民,庄国顺.SO_2与Fe_2O_3生成Fe(Ⅱ)(aq)和硫酸盐的复相反应机理[J].高等学校化学学报,2006,27(7):1347-1350. 被引量:13
  • 3窦森,肖彦春,张晋京.土壤胡敏素各组分数量及结构特征初步研究[J].土壤学报,2006,43(6):934-940. 被引量:36
  • 4[1]Costerton JW.Introduction to biofilm.Int J Antimicrob Agents 1999;11:217-21.
  • 5[2]Characklis WG.Marshal KC.Biofilms.New York:John Wiley and Sons:1990.
  • 6[3]Bakke R,Trulear MG,Robinson JA,et al.Activity of Pseudomonas aeruginosa in biofilms:steady state.Biotechnol Bioeng 1982;26:1418-24.
  • 7[4]Heydorn A,Ersboll B,Hentzer M,et al.Experimental reproducibility in flow-chamber biofilms.Microbiology 2000:146:2409-15.
  • 8[5]Shirtliff ME,Mader JT,Camper Ak Molecular interactions in biofilms.Chem Biol 2000;9:859-71.
  • 9[6]Costerton JW,Cheng KJ,Geesey GG,et al.Bacterial biofilms in nature and disease.Annu Rev Microbiol 1987;41:435-64.
  • 10[7]Dunne WM.Bacterial adhesion:seen any good biofilms lately?.Clin Microbiol Rev 2002:15:155-66.

共引文献128

同被引文献25

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部