期刊文献+

DCE-MRI影像联合临床信息预测乳腺癌复发风险评分 被引量:1

Prediction of Oncotype DX RS in breast cancer by integrating of DCE-MRI radiomics and clinicopathologic data
下载PDF
导出
摘要 探索基于动态增强磁共振成像(dynamic contrast enhanced magnetic resonance imaging,DCE-MRI)的影像组学特征联合临床病理信息对乳腺癌21基因检测复发风险评分(Recurrence Score,RS)的预测作用。采集130例雌激素受体(Estrogen Receptor,ER)阳性且无淋巴结转移的早期乳腺癌患者数据;分割影像病灶区域,提取形态、统计、纹理特征;对特征进行单变量预测分析,并运用网格搜索和十折交叉验证相结合的方法选择最佳参数组合和最优特征子集建立弹性网络回归模型进行多变量预测分析。在单变量预测分析中,有8维影像特征和1维临床病理特征与RS显著相关(P<0.05)。在多变量预测分析中,基于影像特征建立的模型R^(2)为0.264(P=0.038),联合临床病理信息后,R^(2)提高到0.295(P=0.033)。结果表明,DCE-MRI影像组学特征和临床病理信息与RS存在关联。 In this study,we established the statistical model by integrating the dynamic enhanced magnetic resonance imaging(DCE-MRI)and clinicopathological features for prediction of breast cancer Oncotype DX recurrence score(RS).The early breast cancer patients were enrolled with estrogen receptors(ER)positive and lymph node metastasis negative.The lesion areas were obtained,where the radiomic features were extracted,including morphological,statistical and texture features.Afterwards,univariate analysis of radiomics features were examined.The predictive model was established based on the selected features and the model parameters selected by a grid search method under the ten-fold cross-validation.Thereafter,an elastic network regression model was built for multivariate regression analysis.In the univariate feature analysis,8 imaging features and one clinicopathological features were significantly correlated with RS(P<0.05).The multivariate regression model was established using the selected image features,which yield the R square of 0.264(P=0.038).The prediction model was improved in terms of R square of 0.295(P=0.033)after combing clinicopathological factors.The results showed that DCE-MRI radiomics and clinicopathologic information can be used as biomarkers for association with the recurrence of breast cancer.
作者 崔雅静 范明 厉力华 CUI Yajing;FAN Ming;LI Lihua(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2022年第1期67-73,共7页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(61871428,61731008) 浙江省自然科学基金资助项目(J19H180004)。
关键词 乳腺癌 21基因检测复发风险评分 DCE-MRI 影像组学 预后 breast cancer Oncotype Dx recurrence score DCE-MRI radiomics prognosis
  • 相关文献

参考文献4

二级参考文献54

  • 1冯前进,陈武凡.模糊马尔可夫场模型与图像分割新算法[J].南方医科大学学报,2006,26(5):579-583. 被引量:8
  • 2杨华,赵建农,张小明.超顺磁性氧化铁微粒在分子影像学中的研究现状[J].国外医学(临床放射学分册),2007,30(4):221-223. 被引量:3
  • 3Lauterbur P C. Image formation by induced local interaction: examplesemploying nuclear magnetic resonance[J]. Nature, 1973,242:190-191.
  • 4Zhong FL, Wei SL, Xiao JL, et al. The gadolinium complexes withpolyoxometalates as potential MRI contrast agents [J]. Magnetic Reso-nance Imaging, 2007,25( 3): 412-417.
  • 5Shiraishi K, Kawano Kb, Maitani Y, et al. Polyion complex micelleMRI contrast agents from poly (ethylene glycol)-b-poly (L-lysine)block copolymers having Gd-DOTA; preparations and their control ofTl-relaxivities and blood circulation characteristics [J]. Journal ofControlled Release, 2010, (148): 160-167.
  • 6Weinmann H J, Brasch R C, Press W R? et al. Characteristics ofgadolinium-DTPA complex:A potential MRI contrats agent [J]. Am JRoentgenol, 1984,142: 619-624.
  • 7Furong Y, Elm KJ, Zhang JJ, et al. A Peptide targeted contrast agentspecific to fbrin-fibrenectin complexes for cancer rmolecula rimagingwith MRI[J].Bioconjugate Chem, 2008,19:2300-2303.
  • 8Yim H,Yang SG, Jeon YS,et al. The performance of gadolinium di-ethylene triamine pentaacetate-pullulan hepatocyte-specific Tl con-trast agent for MRI[J]. Biomaterials, 2011 ,(32):-5187-5194.
  • 9Li Weis-heng, Luo Jian, Chen Zhong-ning, et al. A self-assembly het-erotrinuclear gadolinium (III) -iron (II) complex as a MRI contrastagent[J]. Inorganic Chemistry Communications, 2011,(14):1898-1900.
  • 10Adel BD, Bovens SM, Boekhorst B, et al. Histological validation ofiron-oxide and gadolinium based MRI contrast agents in experimentalatherosclerosis: The do’s and don't'sfJ]. Atherosclerosis, 2012: 1-7.

共引文献62

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部