摘要
讨论了一类奇摄动分数阶微分方程边值问题。在适当假设条件下,先求出该问题的外部解,再运用双参数展开理论构造出边界层矫正项,得到解的形式渐近展开式,最后运用极值原理进行余项估计。
A class of the boundary value problem for the singularly perturbed fractional differential equation is considered.Under the suitable conditions,firstly,the outer solution of the original problem is obtained by Volterra integral equation;secondly,using the two-parameters expanding theory of power series,the boundary layers are constructed;finally,by using the extremum principle of fractional differential equation,the remainder is estimated.
作者
李金洲
包立平
LI Jinzhou;BAO Liping(School of Sciences,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2022年第1期98-102,共5页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(51775154)。
关键词
分数阶微分方程
双参数
奇摄动
fractional differential equation
two-parameters
singularly pesrturbed