摘要
设H是无限维复Hilbert空间,B(H)表示H上的有界线性算子全体构成的集合.本文对B(H)中使得f(T)满足Weyl定理的算子进行刻画,其中f是T的谱集的某个邻域上的解析函数.同时,也对算子函数的Weyl定理及算子Weyl定理的摄动之间的关系进行了讨论.
Let H be a complex infinite dimensional Hilbert space.B(H)denotes the algebra of all bounded linear operators on H.In this paper,we characterize the operators in B(H)for which f(T)satisfies Weyl’s theorem,where f denotes the analytic function on some neighbourhood of the spectrum of T.Also,the relationships between Weyl’s theorem for functions of operators and the stability of Weyl’s theorem are explored.
作者
杨莉莉
曹小红
Li Li YANG;Xiao Hong CAO(School of Mathematics and Statistics,Shaanxi Normal Uniuersity,Xi'an 710119,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2022年第1期67-76,共10页
Acta Mathematica Sinica:Chinese Series
基金
陕西师范大学中央高校基本科研业务费资助项目(GK202007002)。
关键词
WEYL定理
算子函数
稳定性
Weyl’s theorem
function of operator
stability