期刊文献+

一类自伴随Lubrication方程的对称,守恒律,拉格朗日函数和精确解 被引量:2

On the Class of Self-Adjoint Lubrication Equation:Symmetries,Conservation Laws,Lagrangians and Exact Solutions
原文传递
导出
摘要 本文借助李对称分析研究了一类自伴随的Lubrication方程,此类方程可用来描述液体薄膜动力学行为.基于非奇异的局域守恒律乘子和李对称方法,我们系统地推导出了此类方程的局域守恒律,非局域相关系统,李对称和一些有趣的精确解.此模型的非局域相关系统在本文中被首次研究,可用于寻找原方程更丰富的解空间.此外,基于局域守恒律和变分原则,我们推导出原方程的四类拉格朗日函数. In this work,the class of self-adjoint lubrication(SAL) equation is investigated,which is an important model of various nonlinear real situations describing the dynamics of thin liquid films.By applying a set of non-singular local multipliers and the classical Lie method,we systematically present the complete set of local conservation laws,nonlocally related PDE systems,Lie symmetries and some interesting analytical solutions of the equation for an arbitrary constant a.Here it is the first time to investigate the nonlocally related PDE systems for this model,which can be used to expand the solution space of the given PDE system.Furthermore,by using its local conservation laws and variational principle,we obtain four kinds of Lagrangians.
作者 田守富 张田田 TIAN Shoufu;ZHANG Tiantian(School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China)
出处 《应用数学学报》 CSCD 北大核心 2022年第1期132-144,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金面上项目(11975306) 江苏省自然科学基金面上项目(BK20181351) 江苏省“333工程”中青年科学技术带头人 江苏省“六大人才高峰”高层次人才项目(JY-059)资助。
关键词 自伴随的Lubrication方程 李对称 守恒律 拉格朗日函数 精确解 self-adjoint Lubrication equation Lie symmetry conservation laws lagrangians exact solutions
  • 相关文献

参考文献3

二级参考文献41

  • 1Anderson, I. M., Kamran, N. and Olver, P. J., Internal, external and generalized symmetries, Adv. Math., 100, 1993, 53-100.
  • 2Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989.
  • 3Bluman, G. W., Temuerchaolu and Anco, S., New conservation laws obtained directly from symmetry action on a known conservation law, J. Math. Anal. Appl., 322, 2006~ 233-250.
  • 4Bluman, G. W., Tian, S. F. and Yang, Z. Z., Nonclassical analysis of the nonlinear Kompaneets equation, J. Eng. Math., 84, 2014, 87-97.
  • 5Chern, S. S. and Tenenblat, K., Pseudo-spherical surfaces and evolution equations~ Stud. Appl. Math., 74(1), 1986, 55 83.
  • 6Chen, Y. and Hu, X. R., Lie symmetry group of the nonisospectral Kadomtsev-Petviashvili equation, Z. Naturforsch A., 62(a), 2009, 8 14.
  • 7Dodd, R. K. and Gibbon, J. D., The prolongation structure of a higher order Korteweg-de Vries equation, Proc. R. Soc. Lond. A, 358, 1978, 287 296.
  • 8Fan, E. G., Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35, 2002, 6853-6872.
  • 9Galas, F., New nonlocal symmetries with pseudopotentials, J. Phys. A: Math. Gen., 25, 1992, L981-L986.
  • 10Guthrie, G. A. and Hickman, M. S., Nonlocal symmetries of the KdV equation, J. Math. Phys., 26, 1993, 193-205.

共引文献13

同被引文献30

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部