期刊文献+

基于迁移学习的示功图诊断方法 被引量:4

Diagnosis Method of Indicator Diagram Based on Transferring Learning
下载PDF
导出
摘要 示功图是数字化分析抽油机作业状况的重要依据,不同形状的示功图代表着不同的作业状况。传统分析程序基于专家系统或统计学习方法对示功图进行分析,需要大量专家知识且鲁棒性较低。从深度学习的角度,提出了一种基于深度卷积神经网络的示功图检测方法,并通过迁移学习,大幅度减少了模型收敛所需样本数量。实验表明,该方法可以有效提高示功图分类的准确率,实现了真正的工业可用。 The indicator diagram is an important base for digital analysis of the operating conditions of the pumping unit.Different shapes of indicator diagrams represent different operating conditions.Traditional analysis programs analyze indicator diagrams based on expert systems or statistical learning methods,which require a large amount of expert knowledge,and the robust is low.From the perspective of deep learning,an indicator diagram detection method based on deep convolutional neural networks is put forward,and the number of samples required for model convergence is greatly reduced through transferring learning.Experiments show that the method can effectively improve the accuracy of the indicator diagram classification.True industrial application is realized.
作者 段志刚 李汉周 司志梅 叶红 赵庆婕 Duan Zhigang;Li Hanzhou;Si Zhimei;Ye Hong;Zhao Qingjie(Petroleum Engineering Technology Research Institute of Sinopec Jiangsu Oilfield Branch,Yangzhou,225009,China)
出处 《石油化工自动化》 CAS 2022年第1期72-76,共5页 Automation in Petro-chemical Industry
基金 中石化集团公司科研项目,机抽井智能举升技术开发与应用(P200685)。
关键词 示功图 卷积神经网络 迁移学习 残差网络 indicator diagram convolutional neural network transferring learning residual network
  • 相关文献

参考文献5

二级参考文献77

  • 1张乃禄,张源,徐竞天,邹涛.基于通用无线分组业务(GPRS)的油田生产安全监控系统[J].中国安全科学学报,2006,16(8):124-127. 被引量:14
  • 2阿里也夫T M 等 牟而中等(译).抽油井自动控制和诊断[M].北京:石油工业出版社,1993..
  • 3S. G. Gibbs, A .B. Neely. Computer Diagnosis of Down-hole Conditions in Sucker Rod Pumping Wells{J]. SPE 1165, 1966.
  • 4Nazi, G.M. et. Application of Artificial Neural Network to Pump Card Diagnosis[J]. SPE 25420, 1994.
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 6Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 7Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 8Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 9Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 10Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.

共引文献589

同被引文献45

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部