摘要
Although bismuth vanadate(BiVO4)has been promising as photoanode material for photoelectrochemical water splitting,its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes.As a hole blocking layer of BiVO4,titanium dioxide(TiO_(2)) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity.Herein,a crystal facet engineering of TiO_(2) nanostructures is proposed to control band structures for the hole blocking layer of BiVO4 nanodots.We design two types of TiO_(2) nanostructures,which are nanorods(NRs)and nanoflowers(NFs)with different(001)and(110)crystal facets,respectively,and fabricate BiVO4/TiO_(2) heterostructure photoanodes.The BiVO4/TiO_(2) NFs showed 4.8 times higher photocurrent density than the BiVO4/TiO_(2) NRs.Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination,which is originated from the formation of type II band alignment between BiVO4 nanodots and TiO_(2) NFs.This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes.
基金
supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(2021R1A2B5B03001851)
the NRF Grant funded by the Korean government MSIT(2021M3H4A1A03057403).M.G.L.acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education(2021R1A6A3A03039988).J.W.Y.acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education(2021R1A6A3A13046700).