期刊文献+

Multi-Bandgap Monolithic Metal Nanowire Percolation Network Sensor Integration by Reversible Selective Laser-Induced Redox 被引量:3

下载PDF
导出
摘要 Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning.However,the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure.The ideal electronics should not have defective interfaces of dissimilar materials.In this study,we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor-metal interface by reversible selective laser-induced redox(rSLIR)method.Furthermore,rSLIR can control the oxidation state of transition metal(Cu)to yield semiconductors with two different bandgap states(Cu_(2)O and CuO with bandgaps of 2.1 and 1.2 eV,respectively),which may allow multifunctional sensors with multiple bandgaps from the same materials.This novel method enables the seamless integration of single-phase Cu,Cu_(2)O,and CuO,simultaneously while allowing reversible,selec-tive conversion between oxidation states by simply shining laser light.Moreover,we fabricated a flexible monolithic metal-semiconduc-tor-metal multispectral photodetector that can detect multiple wavelengths.The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期216-228,共13页 纳微快报(英文版)
基金 supported by a National Research Foundation of Korea(NRF)Grant funded through the Basic Science Research Program(2021R1A2B5B03001691,2021M3H4A1A02050237,2016R1A5A1938472) by Creative Materials Discovery Program(NRF-2016M3D1A1900035).M.Cho acknowledges the financial support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(2021R1A4A1033224).
  • 相关文献

同被引文献15

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部