期刊文献+

基于模糊规则学习的无监督异构领域自适应 被引量:3

Unsupervised Heterogeneous Domain Adaptation with Fuzzy Rule Learning
下载PDF
导出
摘要 异构领域自适应是一种借助源域知识为语义相关但特征空间不同的目标域建模的技术。现有的异构领域自适应方法大多属于半监督方法,这些方法要求目标域中存在一部分已标记样本,然而这种数据集在很多异构领域自适应任务中是稀缺的。为了解决上述问题,提出了一种新的基于模糊规则学习的无监督异构领域自适应算法。一方面,该方法基于TSK模糊系统的规则学习分别对源域和目标域进行特征学习,通过学习两个特征变换矩阵将源域和目标域投影到一个公共特征子空间;另一方面,为了减少因特征变换所造成的信息损失,该算法采取了多种信息保持策略,并且最大化公共特征子空间中源域数据和目标域数据之间的相关性。通过在几个真实领域自适应数据集上进行实验,验证了所提算法相对于现有的异构领域自适应方法具有一定的优越性。 Heterogeneous domain adaptation is a technique that uses the knowledge of source domain to model the target domain.The source domain and the target domain are semantically related,but their feature spaces are different.Among existing heterogeneous domain adaptive methods,most of them belong to semi-supervised methods,which require some labeled samples in the target domain.However,this kind of dataset is rare in many heterogeneous adaptive tasks.In order to solve the above problem,this paper proposes a new unsupervised heterogeneous domain adaptive algorithm based on fuzzy rule learning.On the one hand,by introducing the TSK fuzzy system,the proposed method learns two feature transformation matrices corresponding to the source domain and the target domain respectively.By learning two feature transformation matrices,the source domain and the target domain are projected into a common feature subspace.On the other,in order to reduce the information loss caused by feature transformation,the proposed algorithm adopts a variety of information preservation strategies and maximizes the correlation between the transformed source domain data and target domain data.Through experiments on domain adaptive datasets,the results show that the proposed algorithm has certain advantages over the existing heterogeneous domain adaptive methods.
作者 孙武 邓赵红 娄琼丹 顾鑫 王士同 SUN Wu;DENG Zhaohong;LOU Qiongdan;GU Xin;WANG Shitong(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi,Jiangsu 214122,China;Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence,Ministry of Education,Fudan University,Shanghai 200433,China;Zhangjiang Lab,Shanghai 200120,China;Jiangsu North Huguang Opto-Electronics Co.,Ltd.,Wuxi,Jiangsu 214000,China)
出处 《计算机科学与探索》 CSCD 北大核心 2022年第2期403-412,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金面上项目(61772239) 上海市“脑与类脑智能基础转化应用研究”市级重大科技专项(2018SHZDZX01)。
关键词 模糊规则学习 TSK模糊系统 信息保持 异构领域自适应 fuzzy rule learning TSK fuzzy system information preserving heterogeneous domain adaptation
  • 相关文献

参考文献3

二级参考文献61

  • 1周新华,黄道.一种基于蚁群算法的模糊C均值聚类[J].控制工程,2005,12(2):132-134. 被引量:24
  • 2张利彪,周春光,马铭,刘小华,孙彩堂.基于粒子群优化算法的模糊C-均值聚类[J].吉林大学学报(理学版),2006,44(2):217-222. 被引量:27
  • 3段海滨,王道波,于秀芬.蚁群算法的研究进展评述[J].自然杂志,2006,28(2):102-105. 被引量:31
  • 4朱庆保.蚁群优化算法的收敛性分析[J].控制与决策,2006,21(7):763-766. 被引量:24
  • 5Asuhan K S, Selim S.A global algorithm for the fiazzy clustering problem[J].Pattem Recognition, 1993,26(9) : 1357-1361.
  • 6Hart K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J].IEEE Transactions on Evolutionary Computation, 2002,6(6) : 580-593.
  • 7Dorigo M, Maniezzo V, Colomi A.The ant system: Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man and Cybernetics: Part B, 1996,26( 1 ) : 29-41.
  • 8Zadeh L A. Probability theory and fuzzy logic are complementary rather than competitive. Technometrics, 1995, 37(3): 271-276.
  • 9Dubois D, Prade H. Fuzzy sets and probability: misunderstandings, bridges, and gaps. In: Proceedings of the 2nd IEEE Conference on Fuzzy Systems. San Francisco, CA: IEEE, 1993. 1059-1068.
  • 10Mendel J M. Uncertain Rule-based Fuzzy Logic Systems Introduction and New Directions. New York: Prentice-Hall, 2000.

共引文献61

同被引文献18

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部