摘要
我国政府目前已建成一定规模的充电站网络。针对充电站网络利用率低,存在大量冗余站点和电动汽车充电难等问题,提出了一种数据驱动的充电站网络优化方法。首先,该方法模拟电动汽车充电行为,对不同时间戳内的充电站分别建立队列系统,进而估计充电站间的到达率情况。在此基础上,分析城市电动汽车的充电行为空间特征,用于挖掘城市电动汽车的充电热点。然后,对充电站间的竞争依赖关系、地理位置特征及用户充电偏好间的相互作用进行建模,进而提出了充电站在网络中的使用效益评分函数。最后,建立了以最大化充电站网络使用效益为目标的充电站网络优化模型,并提出了基于充电热点的启发式网络扩展算法进行模型求解,从而获取最佳充电站网络布局。以一个典型的城区为例进行的实验测试结果表明,该方法不仅能在消除冗余站点的同时提高充电站利用率,而且能够识别充电站网络拥堵区域,为政府规划部门解决充电难问题提供了决策支持。
Chinas government has built a certain scale of charging station network.To address the problems of low charging station network utilization,the existence of a large number of redundant charging stations,and the difficulty of charging,this paper proposes a data-driven charging station network optimization approach.Firstly,this paper simulates the charging behavior of EV(electric vehicle),establishes queuing systems for charging stations in different time stamps,and then estimates the arrival rates among charging stations.On this basis,the spatial characteristics of urban EV charging behavior are analyzed,which is used to explore the urban EV charging hotspots.Then,the interactions among competitive dependencies,geographic features and user charging preferences among charging stations are modeled,and a scoring function is proposed to assess the usage benefit of charging station in the network.Lastly,a charging station network optimization model which aims at maximizing the usage benefit of charging station network is developed,and a heuristic network expansion algorithm based on charging hotspots is also presented to solve the model,and thus the optimal charging station network layout can be obtained.Taking a typical urban area as an example to conduct experiments,the experimental results demonstrate that the method proposed in this paper can not only improve charging station utilization while eliminating redundant stations,but also identify charging station network congestion areas,which can provide decision support for government planning departments to solve the charging difficulty.
作者
孟祥福
杨玉
张永库
张霄雁
陈柔冰
王泽
MENG Xiangfu;YANG Yu;ZHANG Yongku;ZHANG Xiaoyan;CHEN Roubing;WANG Ze(College of Electronic and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China)
出处
《计算机科学与探索》
CSCD
北大核心
2022年第2期428-437,共10页
Journal of Frontiers of Computer Science and Technology
基金
国家自然科学基金(61772249)
辽宁省教育厅科学研究项目(LJ2019QL017,LJKZ0355)。
关键词
充电站网络优化
电动汽车(EV)
冗余充电站
optimization of charging station network
electric vehicle(EV)
redundant charging station