期刊文献+

高光谱协同稀疏与非局部低秩张量变化检测 被引量:2

Hyperspectral Change Detection Using Collaborative Sparsity and Nonlocal LowRank Tensor
下载PDF
导出
摘要 高光谱图像变化检测可提供地球表面的时间维变化信息,对城乡规划和管理至关重要。因具有较高的光谱分辨率,高光谱图像常被用于检测更精细的变化。针对高光谱变化检测的问题,提出一种基于协同稀疏与非局部低秩张量的高光谱图像变化检测方法。该方法首先求得前后时间点的高光谱差分图像,再根据差分图像中图像块的非局部分布特点,提取不同的非局部张量簇。然后基于协同稀疏正则化和低秩正则化建立协同稀疏与非局部低秩张量变化检测模型,并采用交替方向乘子法对模型求解得到表示系数。最后根据表示系数求得张量在不同类别中的投影残差,进而根据投影残差最小准则判断该张量块是否发生变化。在Farmland数据集和Urban area in San Francisco City数据集上进行实验,实验结果表明该方法取得较好的高光谱变化检测精度。 Hyperspectral image change detection can provide timely change information on the surface of the earth,which is essential for urban and rural planning and management.Due to the higher spectral resolution,hyperspectral images are often used to detect finer changes.Aiming at the problem of change detection by using hyperspectral image,a hyperspectral change detection method based on collaborative sparsity and nonlocal low-rank tensor is proposed.This method first obtains hyperspectral differential image at different time points,and then extracts different nonlocal similar block tensor clusters according to the nonlocal distribution characteristics of the image blocks in the differential image.Then,based on collaborative sparse regularization and low-rank regularization,a change detection model using collaborative sparsity and non-local low-rank tensor is established,and the representation coefficient is obtained by solving the model using the alternating direction method of multipliers.Finally,the projection residuals of the tensor in different categories are obtained according to the representation coefficients,and then the projection residual minimization criterion is judged whether the tensor has changed.Experiments on Farmland and Urban area in San Francisco City datasets demonstrate that the proposed method can achieve much better changes detection accuracy.
作者 詹天明 宋博 孙乐 万鸣华 杨国为 ZHAN Tianming;SONG Bo;SUN Le;WAN Minghua;YANG Guowei(School of Information Engineering,Nanjing Audit University,Nanjing 211815,China;Collaborative Innovation Center of Audit Information Engineering and Technology,Nanjing Audit University,Nanjing 211815,China;School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210094,China)
出处 《计算机科学与探索》 CSCD 北大核心 2022年第2期448-457,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金面上项目(61976117,61876213) 江苏省自然科学基金面上项目(BK20191409) 江苏省高校自然科学研究重大项目(19KJA360001,18KJA520005) 审计信息工程与技术协同创新中心2018年度研究课题(18CICA09) 南京审计大学青年教师科研培育项目(18QNPY015) 江苏省研究生科研与实践创新计划项目(KYCX20_1680)。
关键词 高光谱 变化检测 协同稀疏 非局部低秩 张量分解 hyperspectral change detection collaborative sparsity non-local low-rank tensor decomposition
  • 相关文献

参考文献3

二级参考文献45

  • 1戴芹,马建文,欧阳赟,哈斯巴干.利用贝叶斯网络进行遥感变化检测[J].中国图象图形学报,2005,10(6):705-709. 被引量:12
  • 2Iordache M D, Bioucas-dias J M, Plaza A. Sparse unmixing of hyperspectml data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(6) : 2014 - 2039.
  • 3Settle J J, Drake N A. Linear mixing and the estimation of ground cover proportions [ J ]. International Journal of Remote Sensing, 1993,14(6) : 1159 - 1177.
  • 4Miao L, Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factor- ization[ J 1.1EEE Transactions on Geoscience and Remote Sens- ing,2007,45(3) :765 - 777.
  • 5Winter M E. N-FqNDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data[ A]. Proc SP1E Image Spectrometry V [C]. USA: SPIE, 1999. 266 - 277.
  • 6Nascimento J M P, Bioucas-dias J M. Vertex component analy- sis: A fast algorithm to unmix hyperspectral data [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(4) : 898 - 910.
  • 7Jun L, Bioucas-dias J M. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data[A]. IEEE Interna- tional Geoscience and Remote Sensing Symposium, 1GARSS [ C]. Boston: IEEE, 2008.250 - 253.
  • 8Bioucas-dias J M. A variable splitting augmented Lagrangian approach to linear spectral unmixing[A]. Workshop on Hyper- spectral Image and Signal Processing: Evolution in RemoteSensing, WHISPERS [C]. Grenoble: IEEE, 2009.1 - 4.
  • 9Lee D D, Seung H S. Learning the parts of objects by nonnega- five matrix factorization [ J ]. Natures, 1999,401 (6755) : 788 - 791.
  • 10Lin C J. Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation. 2009 (10) : 2756 - 2779.

共引文献78

同被引文献40

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部