摘要
为了有机融入领域知识的内在信息与关联,将知识图谱引入智慧教学过程,构建了知识图谱与教育大数据协同驱动的自适应学习模式。通过对多源、异构的大数据进行数据采集与数据分析,认知学生的学习行为特征,为自适应学习构筑重要前提;将课程的知识体系化,构建多维度下的知识图谱,其拓扑结构蕴含领域专家经验、知识关联与学习路径,为基于课程内容的自适应学习奠定基础;将知识图谱与教育大数据进行深度融合,为学生的自适应学习提供量化的、实时的决策支持。新模式实现了规模化教育与个性化培养的有机结合,提供了具有泛化能力的新型智慧教学思路,有利于开展自适应学习资源推送、自适应学习路径规划与自适应学习预警等智慧教学应用与实践。
In order to integrate the internal information and association of domain knowledge organically,the knowledge graph is introduced into the smart teaching process,and an self-adaptive learning mode driven by the collaboration of knowledge graph and education big data is constructed.Through data collection and data analysis of multi-source,heterogeneous big data,recognize the learning behavior characteristics of students,and build an important prerequisite for adaptive learning.By systematizing the knowledge of courses,a multidimensional knowledge graph is constructed,whose topology contains domain expert experience,knowledge association and learning path,laying a foundation for self-adaptive learning based on course content.The knowledge graph is deeply integrated with educational big data to provide quantitative and real-time decision support for students’self-adaptive learning.The new model realizes the organic combination of large-scale education and individualized training,and provides a new intelligent teaching idea with generalization ability,which is conducive to the development of self-adaptation,smart teaching applications and practices such as learning resource push,self-adaptive learning path planning,and self-adaptive learning early warning.
作者
宋丹
丰霞
何宏
王宁
Song Dan;Feng Xia;He Hong;Wang Ning
出处
《高等工程教育研究》
CSSCI
北大核心
2022年第1期163-168,共6页
Research in Higher Education of Engineering
基金
教育部人文社会科学项目“知识图谱与教育大数据协同驱动的自适应学习模式研究”(20YJA880045)
湖南省普通高等学校教学改革项目“基于继续教育数据的跨域关联与智慧教育研究”(HNJG-2021-0853)
湖南省普通高等学校教学改革项目“基于SPOC的高校继续教育在线学习行为分析研究”(HNJG-2020-0773)
“继续教育学生大数据的多源数据分析与个性化教育研究”(湘教通[2018]436号)
湖南省教育科学“十三五”规划课题“基于教育大数据和知识图谱的个性化教育研究”(XJK019BXX004)。
关键词
智慧教学
知识图谱
教育大数据
自适应学习模式
smart teaching
knowledge graph
education big data
self-adaptive learning mode