期刊文献+

随机低秩逼近算法在推荐系统中的应用

Application of randomized low-rank approximation algorithm in recommendation system
下载PDF
导出
摘要 针对推荐系统中数据量越来越大,其对应的矩阵填充问题算法效率有待提升.基于随机算法策略以及高效数据访问要求,提出一种新的求解矩阵填充问题的算法,并借助Matlab软件实现该算法.数值试验结果表明,该算法在效率上可提升30%左右. In view of the problem that with increasing large amount of datas in a recommendation system,the computing efficiency of its corresponding matrix completion algorithms need to be improved.Based on randomized algorithm strategy and efficient data access requirements,a new algorithm for solving matrix completion problem was proposed,and the Matlab software was employed to realize the algorithm.The numerical experiment result shows that the new algorithm can speed up the computing efficiency of original one by about 30%.
作者 陈熙 邓杰臣 席势鸿 刘晓辰 张相君 冯月华 CHEN Xi;DENG Jiechen;XI Shihong;LIU Xiaochen;ZHANG Xiangjun;FENG Yuehua(School of Mechanical and Automotive Engineering,Shanghai 201620,China;School of Air Transportation and School of Flying,Shanghai 201620,China;School of Mathematics,Physics and Statistics,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《上海工程技术大学学报》 CAS 2021年第3期281-284,共4页 Journal of Shanghai University of Engineering Science
基金 上海工程技术大学大学生创新训练计划资助项目(CX2021008)。
关键词 奇异值分解 随机算法 低秩逼近 推荐系统 singular value decomposition(SVD) randomized algorithm low-rank approximation recom-mendation system
  • 相关文献

参考文献2

二级参考文献10

  • 1Breese J, Heckerman D, Kadie C. Empirical Analysis ofPredictive Algorithms for Collaborative Filtering[ Z]. Tech-nical Report of Microsoft Research, 1998.
  • 2Ricci F,Rokach L,Shapira B,et al. Recommender SystemsHandbook : A Complete Guide for Scientists and Practioners[M] . USA:Springer,2011.
  • 3Sarwar B,Karypis G,Konstan J,et al. Item-Based Collabo-rative Filtering Recommendation Algorithms [ C ] //Proceed-ings of the 10th international conference on World WideWeb. [S. 1. ] :[s. n. ] ,2001 ;285 -295.
  • 4Deerwester S,Dumais S,Furnas G W,et al. Indexing by la-tent semantic analysis [ J ]. Journal of the American Societyfor Information Science, 1990,41 (6) :391 -407.
  • 5Gorrell G. Generalized Hebbian algorithm for incrementalsingular value decomposition in natural language processing[C ] //Proceedings of Conference on EACL. [ S. 1. ] : [ s.n. ],2006.
  • 6Adomavicius G,Tuzhilin A. Towards the next generation ofrecommender systems : A survey of the state-of-art and pos-sible extensions [ J ]. IEEE Transactions on Knowledge andData Engineering,2005 ,17(6) :734 -749.
  • 7Goldberg D,Nichols D,Oki B M,et al. Using collaborativefiltering to weave an information tapestry [ J ]. Communica-tions of the ACM,1992(35) :61 -70.
  • 8刘东辉,彭德巍,张晖.一种基于时间加权和用户特征的协同过滤算法[J].武汉理工大学学报,2012,34(5):144-148. 被引量:12
  • 9余肖生,孙珊.基于网络用户信息行为的个性化推荐模型[J].重庆理工大学学报(自然科学),2013,27(1):47-50. 被引量:18
  • 10史加荣,郑秀云,周水生.矩阵补全算法研究进展[J].计算机科学,2014,41(4):13-20. 被引量:14

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部