期刊文献+

仿人机器人手臂动作模仿系统的研究与实现 被引量:4

Research and Implementation of Humanoid Robot Arm Movement Simulation System
下载PDF
导出
摘要 为实现最直观的人机交互方式,与仿人机器人的动作模仿,建立了仿人机器人系统。利用Kinect体感摄像机的骨骼追踪技术,采集示教者的重要关节骨骼点三维空间坐标,对采集到的数据进行霍尔特指数平滑滤波处理。基于骨骼数据建立机器人手臂重要关节的数学模型,将骨骼数据转换成相应伺服电机控制信息。并发送到仿人机器人主控制器驱动各关节伺服电机转动,实现动作模仿。实验结果表明,所述建模方法适用于仿人机器人手臂动作模仿系统,能够实现实时动作模仿,且运动平滑无抖动,动作模仿效果较好。 In order to achieve the most direct human-computer interaction and humanoid robot movement simulation,establishes a humanoid robot system. Three-dimensional coordinates of important joints of the instructor are acquired by skeletal tracking technique of Kinect camera,the collected data are processed by Holt smoothing filter. The mathematical model of important joints of the robot arm is established using the skeleton data and the skeleton data is converted into the corresponding servo motor control information. Then sent to the humanoid robot main controller to drive the joint servomotor,realizing the movement simulation. The experimental results illustrate that the modeling approach described in this article is applicable to humanoid robot arm simulation system,which can simulate real-time motion with smooth and stable motion trajectory. And this motion simulation has good effect.
作者 刘世平 胡竹 程力 付艳 LIU Shi-ping;HU Zhu;CHENG Li;FU Yan(School of Mechnical Science&Engineering,Huazhong University of Science and Technology,Hubei Wuhan 430074,China)
出处 《机械设计与制造》 北大核心 2022年第2期300-304,共5页 Machinery Design & Manufacture
基金 国家自然科学基金(71771098) 国家重点研发计划(2018YFB1306905) 载人航天领域预先研究项目(030602)。
关键词 人机交互 KINECT 人体骨骼信息 动作模仿 机械臂 Human-Computer Interaction Kinect Human Skeletal Information Action Imitation Mechanical Arm
  • 相关文献

参考文献10

二级参考文献59

  • 1甘海云,张俊智,卢青春,李雅博,王丽芳,胡广彦.轿车混合动力总成控制系统的开发与试验研究[J].机械工程学报,2004,40(8):91-95. 被引量:5
  • 2崔刚,阎立江,曲峰.CAN总线混合动力骄车电控系统的设计与实现[J].哈尔滨工业大学学报,2005,37(11):1560-1563. 被引量:6
  • 3王晓光,苏群星.虚拟维修通用仿真软件系统的设计[J].计算机仿真,2006,23(8):266-268. 被引量:11
  • 4孙剑,曹志敏,殷琪,汤晓鸥.FaceRecognitionwithLearning-based Descriptor [CP/OL]. http//academic.research. microsoft.corn/Publication/13227291/face-recognition-wit h-learning-based-descriptor .2010.
  • 5微软Kinect的机会[J].IT时代周刊,2011,(Z1).
  • 6YUKIHIRO M, TOSHINORI Y. VR-based interactive learning environment for power plant operator [ C ] //. Proceedings of the International Conference on Computers in Education. Washington DC: IEEE Computer Society, 2002 : 922-923.
  • 7XIA Lu, CHEN C C, AGGARWAL J K. Human detec- tion using depth information by Kinect [ EB/OL ]. ( 2011- 11-21 ) [ 2012-04-18 ] . http ://download. csdn. net/down- load/guoming0000/3820813.
  • 8ABHISHEK K. Skeletal tracking using Microsoft Kinect [ J]. Methodology, 2010 : 1-11.
  • 9SHOTTON J, FITZGIBBON A, COOK M. Real-time hu- man pose recognition in parts from single depth images[EB/OL]. (2011-04-20) [20124)4-18]. http: ffwww. computer, org/csdl/proceedings/cvpr/2011/0394/00/0599 5316-abs. html.
  • 10FANELLI G, WEISE T, GALL J. Real time head pose estimation from consumer depth cameras [ EB/OL ]. (2011-11-20) [ 2012434-18 ] . http://wenku, baidu, com/ view/4df718b569dcSO22aaeaO017, html.

共引文献115

同被引文献36

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部