期刊文献+

基于深度学习的弱纹理图像关键目标点识别定位方法 被引量:4

Method for Identifying and Locating Key Target Points in Weak Texture Images Based on Deep Learning
下载PDF
导出
摘要 为提高弱纹理图像关键目标点的检测识别能力,提出基于深度学习的弱纹理图像关键目标点识别定位方法;构建低光照强度弱纹理图像关键目标点的拓扑特征分布模型,采用透射率作为检测系数,结合亮通道的先验知识,建立像素大数据分布集,采用暗原色融合和RGB像素分解方法实现对低光照强度弱纹理图像的信息自适应增强处理;根据透射区域噪点融合匹配结果,采用交叉组合滤波检测和深度学习算法,实现对低光照强度弱纹理图像降噪和信息增强,据此实现对低光照强度弱纹理图像关键目标点检测识别;仿真结果表明,采用该方法定位识别的精度较高,平均为0.93,图像输出质量较好,峰值信噪比平均为32.87,通过准确率-召回率曲线的对比也表明性能较为优越。 In order to improve the detection and recognition ability of key target points in weak texture images,based on deep learning,a method of identifying and locating key target points is proposed.The topological feature distribution model for the weak texture images key targets with low light intensity is constructed.The transmittance is used as the detection coefficient,and the pixel distribution is established by combining the prior knowledge of bright channels.The dark primary color fusion and RGB pixel decomposition methods are used to realize the information adaptive enhancement processing of weak texture images with low light intensity.According to the results of noise fusion and matching in the transmission area,the cross combination filter detection and deep learning algorithm are adopted to realize the noise reduction and information enhancement of the weak texture image with low light intensity,thus realizing the key target point detection and recognition of the weak texture image with low light intensity.Simulation results show that this method has high positioning recognition accuracy,with an average value of 0.93,and good image output quality,with an average peak signal-to-noise ratio of 32.87.By comparing the accuracy-recall curve,the performance of this method is superior.
作者 徐浙君 陈善雄 XU Zhejun;CHEN Shanxiong(College of Artificial Intelligence,Zhejiang Technical College of Posts&Telecom,Shaoxing 312000,China;College of Computer and Information Science,Southwest University,Chongqing 400715,China)
出处 《计算机测量与控制》 2022年第2期186-191,200,共7页 Computer Measurement &Control
基金 国家自然基金项目(61875168) 重庆市自然科学基金(cstc2019jcyj-msxm2550) 浙江省高等教育教学改革研究项目(jg20180873)。
关键词 深度学习 弱纹理 图像 关键目标点 识别 deep learning weak texture images key target points identification
  • 相关文献

参考文献16

二级参考文献140

共引文献210

同被引文献43

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部