摘要
The electrolyte is an essential component of a battery system since it is responsible for the conduction of ions between the electrodes.In the quest for cheaper alternatives to common organic electrolytes for lithium-ion batteries(LIB),we formulated hybrid electrolytes comprising a mixture of Na,K,and Li alkaline salts with ethylene carbonate(EC),ethyl methyl carbonate(EMC),and lithium hexafluorophosphate(LiPF_(6)),giving a total salt concentration of 1.5 M;we determined their physicochemical properties and investigated their electrochemical behavior on a nickel cobalt aluminum oxide(NCA)cathode and graphite(Gr)anode.The electrolytes demonstrated a melting transition peak(T_(m)).eutectic behavior,and ionic conductivities(-13 mS cm^(-1))close to those of a commercial LIB electrolyte(SE,EC/EMC+1 M LiPF_(6))and activation energies of ca.3 kJ mol^(-1).The half-cell coin cells revealed high coulombic efficiency(99%),specific capacity(175 mAh g^(-1) at C/10),and capacity retention(92% for NaCF_(3)SO_(3))for the NCA cathode and a moderate performance(coulombic efficiency of 98%for 20 cycles)on the graphite anode after the formation of the SEI layer.The hybrid electrolytes were cycled at 25℃ in a Gr//NCA cell yielding specific capacities of ca.225 mAh g^(-1) at a C/5 rate,corroborating that the anion plays a key role and highlighting their potential for energy storage applications.