期刊文献+

用户参与视角下多图推文的图像位置和布局效应 被引量:1

Image position and layout effects of multi-image tweets from the perspective of user engagement
原文传递
导出
摘要 该文受用户认知研究启发,探究新浪微博平台中多图推文的图像位置与布局对图像内容向用户互动参与行为转化过程的影响。使用基于单图推文数据训练的XGBoost模型预测多图推文中各张图像所具有的"用户参与潜力",通过相关分析、Z检验、 OLS回归分析验证图像位置、布局与用户参与的关系。研究结果表明,在新浪微博平台的多图推文中,图像位置与布局因素能够在一定程度上影响用户互动参与,具体表现为:1)在图像位置效应中,包含2张、 4张、 5张和8张图像的推文具有右侧位置效应,包含6张、 8张图像的推文具有底部位置效应,包含3张和8张图像的推文分别具有边缘效应和中间效应,其他大多情况下则为对称效应。2)在图像布局效应中,布局2、 3、 4、 5、 6、 8相比单张图像能够正向促进图像的用户参与潜力转化,使得图像推文可能实现超出其内容潜力平均水平的用户参与度;但是布局7具有负面影响,布局9与单图推文无显著差异。研究结果可为社交媒体图像信息发布提供参考。 Inspired by user cognition research, this study explores the image position and layout effects on the transformation process from image content to user engagement behavior in multi-image tweets on the Sina Weibo platform. The XGBoost model trained on the single-image tweet data was used to predict each image’s “user engagement potential” in multi-image tweets. Correlation analysis, Z-test, and ordinary least squares(OLS) regression analysis were used to verify the relationship between image position, layout, and user engagement. The results show that in multi-image tweets on the Sina Weibo platform, the image position and layout factors can affect user engagement behavior to a certain extent. That is,(1) for the image position effect, tweets containing 2, 4, 5, and 8 images had the right position effect. Tweets containing 6 and 8 images had the bottom position effect. Tweets containing 3 and 8 images had the edge and middle effects, respectively. Others, in most cases, had symmetric effects.(2) For the image layout effect, Layouts 2, 3, 4, 5, 6, and 8 can positively promote the user engagement potential transfer of images compared with the single image so that the image tweet may achieve user engagement beyond the average level of its potential. However, Layout 7 had a negative effect, and Layout 9 had no significant difference from single-image tweets. The results of this study can provide references for the release of social media image information.
作者 马晓悦 孟啸 MA Xiaoyue;MENG Xiao(School of Journalism and New Media,Xi'an Jiaotong University,Xi'an 710049,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第1期77-87,共11页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金青年项目(71403201) 教育部人文社会科学研究规划基金项目(19YJA870009) 陕西省自然科学基础研究计划一般项目(2020JM-056) 中央高校基本科研业务费(人文社科)学科交叉项目(SK2021037)。
关键词 社交媒体视觉 图像分布 用户参与 机器学习 回归分析 social media visualization image distribution user engagement machine learning regression analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部