期刊文献+

基于AEKPF算法对锂离子电池SOC与SOH的联合估计 被引量:8

Joint estimation of SOC and SOH for Li-ion battery based on AEKPF algorithm
下载PDF
导出
摘要 为了提高锂离子电池SOC(state of charge)和SOH(state of health)的估计精度,采用自适应扩展卡尔曼粒子滤波(adaptive extended Kalman particle filter,AEKPF)算法估算SOC和SOH,该算法通过修正噪声可以解决运用EKF(extended Kalman filter)算法时的噪声误差累积问题,并且AEKF(adaptive extended Kalman filter)算法作为PF(particle filter)算法的建议分布用来实时更新粒子,可以改善单独采用PF算法时的粒子退化问题.为了提高SOC的估计精度,提出考虑电池的劣化特征,联合SOH实现对SOC的修正估计.在Matlab环境下的仿真结果表明:AEKPF算法与AEKF算法相比,可以得到更加准确的SOC和SOH估计值,而且AEKPF算法联合SOH可以有效提高SOC的估计精度,仿真绝对误差不超过±1%. To improve the estimation accuracy of SOC and SOH for Li-ion battery,the adaptive extended Kalman particle filter(AEKPF)algorithm was used to estimate SOC and SOH.The algorithm could effectively solve the problem of noise error accumulation when using extended Kalman filter(EKF)algorithm by modifying the noise,and as the proposed distribution of particle filter(PF)algorithm,the adaptive extended Kalman filter(AEKF)algorithm was used to update particles in real time to solve the particle degradation of PF algorithm.To improve the accuracy of SOC,considering the deterioration characteristics of batteries,SOH was combined to realize the modified estimation of SOC.The simulation results in Matlab environment show that AEKPF algorithm can obtain more accurate SOC and SOH estimates than AEKF algorithm,and AEKPF algorithm combining with SOH can effectively improve the estimation accuracy of SOC with absolute error less than±1%.
作者 张新锋 姚蒙蒙 宋瑞 崔金龙 ZHANG Xinfeng;YAO Mengmeng;SONG Rui;CUI Jinlong(School of Automobile,Chang′an University,Xi′an,Shaanxi 710061,China;China Auto Research Automobile Inspection Center(Guangzhou)Corporation,Guangzhou,Guangdong 511340,China)
出处 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第1期24-31,共8页 Journal of Jiangsu University:Natural Science Edition
基金 中央高校基本科研业务费专项资金资助项目(CHD2012JC048,72105473) 广东省重点领域研发计划项目(2020B090919004)。
关键词 锂离子电池 SOC估计 SOH估计 自适应扩展卡尔曼粒子滤波算法 联合估计 Li-ion battery SOC estimation SOH estimation AEKPF algorithm joint estimation
  • 相关文献

参考文献9

二级参考文献67

  • 1李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 2DJURIC P M, VEMULA M, BUGALLO M F. Target tracking by particle filtering in binary sensor networks[J]. IEEE Trans on Signal Processing ,2008,56 (6) :2757-2759.
  • 3WANG Xu-dong, SYRMOS V L. Interacting multiple particle filters for fault diagnosis of non-linear stochastic systems [C]//Proc of American Control Conference. 2008:4274-4279.
  • 4ZHANG Gao-ya, LI Qiong-fei, LUO Qing, et al. High frequency financial time series forecasting via particle filtering[ C ]//Proc of International Conference on Information Management, Innovation Management and Industrial Engineering. 2009:62-65.
  • 5CARMI A, OSHMAN Y. Adaptive particle filtering for spacecraft attitude estimation fiom vector observations[J]. Control and Dynamics, 2009,32( 1 ) :232-239.
  • 6DOUCET A, GORDON N. Sequential Monte Carlo methods in practice[M]. New York : Springer-Verlag, 2001.
  • 7GORDON N, SALMOND D. Novel approach to non-linear and non- Gaussian Bayesian state estimation[J]. Proc of Institute Eloetric Engineering, 1993,140 (2) :107-113.
  • 8De FREITAS F G. Bayesian methods for LONDON neural networks [D]. [ S. l. ] :Cambridge University, 1999.
  • 9DOUCET A, GODSILLI S J, ABDRUEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Gomputing, 2000,10 ( 3 ) : 197- 208.
  • 10MERWE van der R, DOUCE A, De FREITAS N, et al. The unscented particle filter[R]. England : Cambridge University Press, 2000 : 1-45.

共引文献217

同被引文献86

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部