摘要
随着无人驾驶的快速发展,解决复杂环境下的交通标志、交通灯以及车道线的识别问题成为研究热点。为了保证后期检测和识别的准确与快速,较好地处理复杂环境下拍摄的视频图像极为关键。文章综述了雾霾、雨、雪等恶劣天气和复杂光线条件下图像处理方法,并且对其各种方法的优缺点进行了简单阐述。最后,总结了本次工作,展望了未来这一方向的发展。
With the rapid development of unmanned driving, solving the problem of recognizing traffic signs, traffic lights and lane lines in complex environment has become a research hotspot. In order to ensure the accuracy and rapidity of post-detection and recognition, it is crucial to deal with the video images captured in complex environment. In this paper, the image processing methods under severe weather and complex light conditions such as smog, rain and snow are summarized, and the advantages and disadvantages of various methods are briefly described. Finally, this work is summarized and the future development in this direction is prospected.
作者
陈飞
刘云鹏
CHEN Fei;LIU Yun-peng(Zhejiang Wanli University,Ningbo 315100,China)
出处
《电脑知识与技术》
2021年第36期5-9,共5页
Computer Knowledge and Technology
基金
国家自然科学基金项目(61906170)
教育部人文社科项目青年基金项目(17YJCZH076)
浙江省自然科学基金项目(LY17F020001)
浙江省教育厅一般项目(Y201840695)
浙江省科技计划项目(LGF19F020008、LGF18F020001)
宁波市科技计划项目(2019C50008)
宁波市自然基金项目(2018A610156、2018A610164)。
关键词
复杂环境
恶劣天气
复杂光线
图像处理
complex environment
bad weather
complex light
image processing