期刊文献+

Symbol-Pair Distances of Repeated-Root Negacyclic Codes of Length 2^(s) over Galois Rings

原文传递
导出
摘要 Negacyclic codes of length 2^(s) over the Galois ring GR(2a,m)are linearly ordered under set-theoretic inclusion,i.e.,they are the ideals<(x+1)^(i)>,0≤i≤2^(s)a,of the chain ring GR(2^(a),m)[x]/<x^(2s)+1>.This structure is used to obtain the symbol-pair distances of all such negacyclic codes.Among others,for the special case when the alphabet is the finite field F2m(i.e.,a=1),the symbol-pair distance distribution of constacyclic codes over F2m verifies the Singleton bound for such symbol-pair codes,and provides all maximum distance separable symbol-pair constacyclic codes of length 2^(s) over F_(2m).
出处 《Algebra Colloquium》 SCIE CSCD 2021年第4期581-600,共20页 代数集刊(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部