期刊文献+

Ideal-Based k-Zero-Divisor Hypergraph of Commutative Rings

原文传递
导出
摘要 Let R be a commutative ring,I an ideal of R and k≥2 a fixed integer.The ideal-based k-zero-divisor hypergraph HkI(R)of R has vertex set ZI(R,k),the set of all ideal-based k-zero-divisors of R,and for distinct elements x1,x2,…,xk in ZI(R,k),the set{x1,x2,…,xk}is an edge in HkI(R)if and only if x1x2…xk∈I and the product of the elements of any(k-1)-subset of{x1,x2,…,xk}is not in I.In this paper,we show that H3I(R)is connected with diameter at most 4 provided that x^(2)(∈)I for all ideal-based 3-zero-divisor hypergraphs.Moreover,we find the chromatic number of H3(R)when R is a product of finite fields.Finally,we find some necessary conditions for a finite ring R and a nonzero ideal I of R to have H3I(R)planar.
出处 《Algebra Colloquium》 SCIE CSCD 2021年第4期655-672,共18页 代数集刊(英文版)
基金 supported by the SERB-EEQ project(EEQ/2016/000367)of Department of Science and Technology,India supported by the INSPIRE programme(IF 140700)of Department of Science and Technology,India.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部