期刊文献+

Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O_(2)/Ar plasma etching for triboelectric nanogenerator applications

原文传递
导出
摘要 In this work,the surface modification using a two-steps plasma etching has been developed for enhancing energy conversion performance in polytetrafluoroethylene(PTFE)triboelectric nanogenerator(TENG).Enhancing surface area by a powerful O_(2) and Ar bipolar pulse plasma etching without the use of CF_(4) gas has been demonstrated for the first time.TENG with modified surface PTFE using a sequential two-step O_(2)/Ar plasma has a superior power density of 9.9 W·m^(-2),which is almost thirty times higher than that of a pristine PTFE TENG.The synergistic combination of high surface area and charge trapping sites due to chemical bond defects achieved from the use of a sequential O_(2)/Ar plasma gives rise to the intensified triboelectric charge density and the enhancement of power output of PTFE-based TENG.The effects of plasma species and plasma etching sequence on surface morphologies and surface chemical species were investigated by a field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The correlation of surface morphology,chemical structure,and TENG performance was elucidated.In addition,the applications of mechanical energy harvesting for lighting,charging capacitors,keyboard sensing and operating a portable calculator were demonstrated.
出处 《Nano Research》 SCIE EI CSCD 2022年第1期272-279,共8页 纳米研究(英文版)
基金 supported by the RNN program of the NANOTEC,NSTDA,Ministry of Higher Education,Science,Research and Innovation(MHESI)and Khon Kaen University,Thailand,the Thailand Research Fund(No.MRG6280196) the Thailand Center of Excellence in Physics(ThEP),and the Basic Research Fund of Khon Kaen University.
  • 相关文献

参考文献2

二级参考文献21

  • 1Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.
  • 2Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280-285.
  • 3Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366-373.
  • 4Yang, Y.; Lin, Z. H.; Hou, T.; Zhang, F.; Wang, Z. L. Nanowire-composite based flexible thermoelectric nano- generators and self-powered temperature sensors. Nano Res 2012, 5, 888-895.
  • 5Katz, E.; Buckmann, A. F.; Willner, [. Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 2001, 123, 10752-10753.
  • 6Wen, D.; Deng, L.; Guo, S.; Dong, S. Self-powered sensor for trace Hg2+ detection. Anal. Chem. 2011, 83, 3968-3972.
  • 7Yu, A.; Jiang, P.; Wang, Z. L. Nanogenerator as self- powered vibration sensor. Nano Energ. 2012, l, 418-423.
  • 8Wang, Z. L. Self-powered nanotech. Sci. Am. 2008, 298, 82-87.
  • 9Akyildiz, I. F.; Jornet, J. M. Electromagnetic wireless nano- sensor networks. Nano Commun. Networks 2010, 1, 3-19.
  • 10Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energ. 2012, 1,328-334.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部