期刊文献+

可视化方法判断多点电荷系统中电荷的平衡状态

A DISCUSSION OF CHARGE EQUILIBRIUM STATE IN A MULTI-CHARGE SYSTEM
下载PDF
导出
摘要 多体相互作用系统中的物体平衡状态稳定性问题通常涉及复杂的微分方程难以解析。我们在研究一个由多个点电荷组成的系统中的电荷受到特定扰动后能否回到原来的平衡状态时,通过分析系统各部分之间的作用,建立空间中的电势能场函数,借助软件Matlab进行数值模拟计算其势能和势能梯度并据此绘制出势能可视化图像与势能梯度图像,简明地判断系统各部分的平衡状态稳定性可能性。 The stability problem of the equilibrium state of a body in a multi-body interaction system usually involves complex differential equations,which are difficult to analyze.To study whether the charge in a system composed of multiple point charges can return to the original equilibrium state after a specific disturbance,the electric potential energy field function in the space is established by analyzing the effect of each component in the system.Matlab software is used to carry out numerical simulation to calculate its potential energy and potential energy gradient,and draw the potential energy visualization image and potential energy gradient image.Therefore,the stability of the equilibrium state of each part of the system is simply judged in this way.
作者 沈浩宇 吴峰瑀 卜泽雄 张萍 SHEN Haoyu;WU Fengyu;BU Zexiong;ZHANG Ping(Department of Physics,Beijing Normal University,Beijing 100875)
出处 《物理与工程》 2021年第6期33-37,共5页 Physics and Engineering
关键词 平衡状态 可视化模拟 势能梯度 equilibrium state visualized modeling gradient of potential energy
  • 相关文献

参考文献1

二级参考文献9

  • 1鲍洛金BB.弹性体系动力稳定性[M].林砚田,译.北京:高等教育出版社,1960.
  • 2巴巴科夫И M.振动理论(下册)[M].薛中擎,译.北京:人民教育出版社,1962.
  • 3提摩盛科SP.机械振动学[M].第3版.翁心榈,徐华肪,译.北京:机械工业出版社,1958.
  • 4Andreyev A S, Risito C. The stability of generalized steady motion [J]. Journal of Applied Mathematics andMechanics, 2002, 66(3): 331-340.
  • 5Rumiantsev V V. On the stability of steady motion [J]. Journal of Applied Mathematics and Mechanics, 1966, 30(5): 1090-1103.
  • 6Krasinskii A Ya. On the stability of steady motions of systems with cyclic coordinates [J]. Journal of Applied Mathematics and Mechanics, 1992, 56(6): 843-853.
  • 7Kalenova V I, Morozov V M. The stability of the steady motions of non-holonomic mechanical systems with cyclic coordinates [J]. Journal of Applied Mathematics and Mechanics, 2004, 68(2): 173-182.
  • 8Karapetian A V. On the problem of steady motions stability ofnonholonomic systems [J]. Journal of Applied Mathematics and Mechanics, 1980, 44(3): 295-300.
  • 9洪菩桃.高等动力学[M].上海:同济大学出版社,1990.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部