期刊文献+

基于CNNCIFG-Attention模型的文本情感分类 被引量:1

CNNCIFG-Attention Model for Text Sentiment Classifcation
下载PDF
导出
摘要 神经网络在处理中文文本情感分类任务时,文本显著特征提取能力较弱,学习速率也相对缓慢。针对这一问题,文中提出一种基于注意力机制的混合网络模型。首先对文本语料进行预处理,利用传统的卷积神经网络对样本向量的局部信息进行特征提取,并将其输入耦合输入和遗忘门网络模型,用以学习前后词句之间的联系。随后,再加入注意力机制层,对深层次文本信息进行权重分配,提高重要信息对文本情感分类的影响强度。最后,将所提出的混合网络模型在京东商品评论集上进行测试。测试结果显示,新方法的准确率达到了92.13%,F-Score数值为92.06%,证明了CNNCIFG-Attention模型的可行性。 Neural networks are weak in text salient feature extraction and have relatively slow learning rate in processing Chinese text sentiment classification tasks.To solve this problem,this study proposes a hybrid network model based on attention mechanism.This study preprocesses the text corpus,uses the traditional convolutional neural network to extract the feature of the local information of the sample vector.Then,extracted features are input into the coupled input and forget gate network model to learn the connection between the preceding and following words and sentences.Subsequently,the attention mechanism layer is added to assign weights to deep-level text information to improve the intensity of the influence of important information on text sentiment classification.Finally,the proposed hybrid network model is tested on the crawled JD product review collection.The test results show that the accuracy of the proposed method reaches 92.13%,and the F-Score value is 92.06%,which proves the feasibility of the CNNCIFG-Attention model.
作者 李辉 王一丞 LI Hui;WANG Yicheng(School of Physics and Electronic Information Engineering,Henan Polytechnic University,Jiaozuo 454000,China;School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo,454000,China)
出处 《电子科技》 2022年第2期46-51,共6页 Electronic Science and Technology
基金 国家自然科学基金(11804081)。
关键词 情感分类 混合网络模型 卷积神经网络 特征提取 耦合输入和遗忘门网络 注意力机制 权重分配 准确率 F-Score数值 sentiment classification hybrid network model convolutional neural network feature extraction coupled input and forget gate network attention model weight distribution accuracy F-Score value
  • 相关文献

参考文献4

二级参考文献71

  • 1秦宇强,张雪英.连续汉语普通话中基于SVM的说话人情感互相关性算法[J].系统工程理论与实践,2011,31(S2):154-159. 被引量:3
  • 2毛六平,王耀南,孙炜,戴瑜兴.一种递归模糊神经网络自适应控制方法[J].电子学报,2006,34(12):2285-2287. 被引量:9
  • 3Rosenberg D. Early modern information overload[J]. Journal of the History of Ideas, 2003, 64(1): 1-9.
  • 4Bruce R, Wiebe J. Recognizing subjectivity: A case study of manual tagging[J]. Natural Language Engineering, 1999, 5(2): 187-205.
  • 5Wiebe J, Bruce R, Bell M, et al. A corpus study of evaluative and speculative language[C]// Proceedings of the Second SIGdial Workshop on Discourse and Dialogue-Volume 16. Association for Computational Linguistics, 2001: 1-10.
  • 6Hu M, Liu B. Mining and summarizing customer reviews[C]// Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004: 168-177.
  • 7Turney P D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]// Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2002: 417-424.
  • 8Turney P D, Littman M L. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems (TOIS), 2003, 21(4): 315-346.
  • 9Jindal N, Liu B. Identifying comparative sentences in text documents[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 244-251.
  • 10Liu J, Yao J, Wu G. Sentiment classification using information extraction technique[M]// Advances in Intelligent Data Analysis VI. Springer Berlin Heidelberg, 2005: 216-227.

共引文献210

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部