期刊文献+

乳腺X线图像计算机辅助诊断技术综述 被引量:5

Review of Computer Aided Diagnosis Technology in Mammography
下载PDF
导出
摘要 近年来,乳腺癌严重威胁全球女性的身体健康,乳腺X线摄影是乳腺癌筛查的有效影像检查手段。乳腺X线图像计算机辅助诊断(computer aided diagnosis,CAD)运用计算机视觉、图像处理、机器学习等人工智能先进技术,自动分析处理乳腺X线图像,可为医生在临床中提供重要的诊断参考。主要面向肿块和微钙化病变检测、分割和分类等问题,从传统方法和深度学习方法两个角度,综述乳腺X线图像计算机辅助诊断技术的发展现状。鉴于近年来深度学习方法取得的突破性成果,回顾了经典的深度学习网络模型,着重介绍了深度学习方法在乳腺X线图像分析中的最新应用,对比分析了传统方法的弊端和深度学习方法的优势。对现有技术存在的问题进行分析,并对未来发展方向进行展望。 In recent years,breast cancer has seriously threatened the health of women all over the world.Mammography is an effective imaging examination tool for breast cancer screening.Computer aided diagnosis(CAD)uses advanced artificial intelligence technologies such as computer vision,image processing,machine learning,etc.to automatically analyze and process mammographic images,which can provide important diagnostic references for doctors in clinical practice.This paper mainly focuses on the detection,segmentation and classification of masses and microcalcifications in mammograms,and reviews the development status of computer aided diagnosis technology in mammography,from the perspectives of traditional and deep learning methods.Considering the breakthrough achievements of deep learning,this paper reviews classical deep learning network models,focuses on the latest application of deep learning in mammography,and compares and analyzes the disadvantages of traditional methods and the advantages of deep learning methods.Finally,the problems of the existing technology are analyzed and the future development direction is prospected.
作者 陈智丽 高皓 潘以轩 邢风 CHEN Zhili;GAO Hao;PAN Yixuan;XING Feng(School of Information and Control Engineering,Shenyang Jianzhu University,Shenyang 110168,China;Department of General Contracting and Coordination,China Construction Eighth Engineering Division Co.,Ltd.,Suzhou,Jiangsu 215000,China;AMS Division,Shenzhen Ysstech Info-Tech Co.,Ltd.,Beijing 100032,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第4期1-21,共21页 Computer Engineering and Applications
基金 国家自然科学基金(61602322) 辽宁省自然科学基金(20180550059) 辽宁省教育厅重点项目(lnzd201904) 辽宁省重点研发计划项目(2019JH2/10100014)。
关键词 乳腺X线图像 计算机辅助诊断(CAD) 计算机视觉 深度学习 人工智能 mammography computer aided diagnosis(CAD) computer vision deep learning artificial intelligence
  • 相关文献

参考文献11

二级参考文献78

  • 1高道利,胡永伟,王文婉,陈范良,潘雷达,袁亚,郁领娣,钱锋.乳房自我检查对降低女性乳腺癌死亡率干预效果的评估[J].中华流行病学杂志,2006,27(11):985-990. 被引量:14
  • 2Noble J A, Boukerroui D. Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging, 2006, 25(8): 987-1010.
  • 3Boukerroui D, Baskurt A, Noble J A, Basset O. Segmentation of ultrasound images -- multiresolution 2D and 3D al- gorithm based on global and local statistics. Pattern Recognition Letters, 2003, 24(4-5): 779-790.
  • 4Cheng J, Chen C, Chou Y, Chen C S K, Tiu C, Chen K. Cell-based two-region competition algorithm with a MAP framwork for boundary delineation of a series of 2D ultrasound images. Ultrasound in Medicine Biology, 2007, 33(10): 1640-1650.
  • 5Yeh C, Chen Y, Fan W, Liao Y. A disk expansion segmentation method for ultrasonic breast lesions. Pattern Recognition, 2009, 42(5): 596-606.
  • 6Madabhushi A, Metaxas D N. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Transactions on Medical Imaging, 2003, 22(2): 155-169.
  • 7Wu H M, Lu H H. Iterative sliced inverse regression for segmentation of ultrasound and MR images. Pattern Recognition, 2007, 40(12): 3492-3502.
  • 8Chang R F, Wu W J, Moon W K, Chen W M, Lee W, Chen D R. Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model. Ultrasound in Medicine and Biology, 2003, 29(11): 1571-1581.
  • 9Unal G, Bucher S, Carlier S, Slabaugh G, Fang T, Tanaka K. Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(3): 335-347.
  • 10Sarti A, Corsi C, Mazzini E, Lamberti C. Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Transactions on Ultrasonics, Ferroelectronics and Frequency Control, 2005, 52(6): 947-960.

共引文献1491

同被引文献49

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部