期刊文献+

基于ACSOA-BP神经网络的瓦斯含量预测模型 被引量:8

Prediction model of coal seam gas content based on ACSOA optimized BP neural network
下载PDF
导出
摘要 针对煤矿瓦斯含量预测问题,以陈四楼煤矿为例,在煤层瓦斯含量影响因素分析的基础上,通过对种群进行混沌初始化,并引入自适应混沌算法和非线性收敛因子,提出了自适应混沌海鸥算法(ACSOA),建立了基于自适应混沌海鸥算法优化BP神经网络的瓦斯含量预测模型(ACSOA-BP),将模型应用于矿井进行预测效果检验。结果表明:陈四楼煤矿二2煤层瓦斯含量与不同因素呈非线性关系,地质构造是控制煤层瓦斯分布的主要因素,ACSOA-BP模型具有更高的预测精度和稳定性。 For the problem of coal seam gas content prediction,the influencing factors of coal seam gas content were analyzed by taking No.2 coal seam of Chensilou Coal Mine as the research object.Based on the above,a prediction model of coal seam gas content was proposed based on adaptive chaotic seagull optimization algorithm(ACSOA)optimized BP neural network(ACSOABP).In the ACSOA,introducing chaos algorithm into SOA algorithm for chaos initialization,and adaptive algorithm and nonlinear convergence factor was proposed in SOA algorithm to improve the optimization ability.And the ACSOA-BP model was applied to the study area to verification.The results show that the relationship is nonlinear between gas content of No.2 coal seam and the influencing factors in Chensilou Coal Mine,and the geological structure is the main controlling factor of gas distribution.Compared with the BP model and the SOA-BP model,the ACSOA-BP model has a higher accuracy and stability.
作者 赵伟 陈培红 曹阳 ZHAO Wei;CHEN Peihong;CAO Yang(Chensilou Coal Mine,Yongcheng Coal Power Group Co.,Ltd.,Henan Energy and Chemical Industry Group Co.,Ltd.,Yongcheng 476600,China;School of Emergency Management and Safety Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China)
出处 《煤矿安全》 CAS 北大核心 2022年第1期174-180,共7页 Safety in Coal Mines
基金 国家自然科学基金煤炭联合基金重点资助项目(U1704242)。
关键词 瓦斯含量 海鸥优化算法 BP神经网络 预测模型 混沌理论 gas content seagull optimization algorithm BP neural network prediction model chaos theory
  • 相关文献

参考文献14

二级参考文献181

共引文献299

同被引文献109

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部