期刊文献+

Feature importance:Opening a soil-transmitted helminth machine learning model via SHAP 被引量:1

原文传递
导出
摘要 In the field of landscape epidemiology,the contribution of machine learning(ML)to modeling of epidemiological risk scenarios presents itself as a good alternative.This study aims to break with the”black box”paradigm that underlies the application of automatic learning techniques by using SHAP to determine the contribution of each variable in ML models applied to geospatial health,using the prevalence of hookworms,intestinal parasites,in Ethiopia,where they are widely distributed;the country bears the third-highest burden of hookworm in Sub-Saharan Africa.XGBoost software was used,a very popular ML model,to fit and analyze the data.The Python SHAP library was used to understand the importance in the trained model,of the variables for predictions.The description of the contribution of these variables on a particular prediction was obtained,using different types of plot methods.The results show that the ML models are superior to the classical statistical models;not only demonstrating similar results but also explaining,by using the SHAP package,the influence and interactions between the variables in the generated models.This analysis provides information to help understand the epidemiological problem presented and provides a tool for similar studies.
出处 《Infectious Disease Modelling》 2022年第1期262-276,共15页 传染病建模(英文)
  • 相关文献

参考文献1

二级参考文献84

  • 1Alavi, A.H., Gandomi, A.H., 2012. Energy-based models for assessment of soil liquefaction. Geoscience Frontiers 3 (4), 541-555.
  • 2Alavi, A.H., Gandomi, A.H., Modaresnezhad, M., Mousavi, M., 2011b. New ground- motion prediction equations using multi expression programming. Journal of Earthquake Engineering 15 (4), 511-536.
  • 3Alavi, A.H., Gandomi, A.H., 2011. A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations 28 (3), 242-274.
  • 4Alavi, A.H., Ameri, M., Gandomi, A.H., Mirzahosseini, M.R., 2011a. Formulation of flow number of asphalt mixes using a hybrid computational method. Con- struction and Building Materials 25 (3), 1338-1355.
  • 5Alavi, A.H., Gandomi, A.H., Sahab, M.G., Gandomi, M., 2010. Multi expression pro- gramming: a new approach to formulation of soil classification. Engineering with Computers 26 (2), 111-118.
  • 6Allen, M.R., Stott, P.A., Mitchell, J.F.B., Schnur, R., Delworth, T.L, 2000. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407 (6804), 617-620.
  • 7Atkinson, P.M., Tatnall, A.R.L., 1997. Introduction: neural networks in remote sensing. International Journal of Remote Sensing 18 (4), 699-709.
  • 8Ayala, A., Brauer, M., Mauderly, J.L, Samet, J.M., 2012. Air pollutants and sources associated with health effects. Air Quality Atmosphere and Health 5 (2), 151-167. http://dx.doi.org/lO.lOOT/sl1869-Oll-O155-2.
  • 9Azamathulla, H.M., Ghani, A.A., Fei, S.Y., 2012. ANFlS-based approach for predicting sediment transport in clean sewer. Applied Soft Computing 12 (3), 1227-1230.
  • 10Azamathulla, H.M., Guven, A., Demir, Y.K., 2011. Linear genetic programming to scour below submerged pipeline. Ocean Engineering 38 (8-9), 995-1000.

共引文献37

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部