期刊文献+

基于机器视觉技术的壳体表面缺陷检测研究 被引量:1

Research on Shell Surface Defect Detection Based on Machine Vision Technology
下载PDF
导出
摘要 以自行研制开发的深海水密圆形连接器外壳体为例,本文提出了一种基于机器视觉技术的壳体表面缺陷检测方法,阐述了机器视觉技术在壳体表面缺陷图像的处理过程及特征值提取过程,并在深海水密圆形连接器产品研发中连接器壳体缺陷检测进行应用。最后,构造了运用BP神经网络进行壳体表面缺陷识别的分类器,实现了壳体表面缺陷的准确识别与分类。 Based on a circular connector shell as an example,this paper expounds the application of machine vision technology in the defect detection of connector shell,and describes in detail the processing process and feature value extraction process of machine vision technology in the shell surface defect image.Finally,the classifier of shell surface defect recognition based on BP neural network is constructed to realize the accurate recognition and classification of shell surface defect.
作者 高文彬 庄申乐 王秀剑 周敏 宋冉冉 张成雷 GAO Wen-bin;ZHUANG Shen-Le;WANG Xiu-jian;ZHOU Min;SONG Ran-ran;ZHANG Cheng-lei(Shandong LongliElectronic CO., Ltd, Linyi, Shandong,276000;LINYI University, Linyi,Shandong, 276000)
出处 《机电元件》 2022年第1期42-46,共5页 Electromechanical Components
基金 2020年山东省泰山产业领军人才工程蓝色人才专项项目:带电插拔深海水密连接器研发及产业化。
关键词 机器视觉 壳体 缺陷 BP神经网络 machine vision shell defects BP neural network
  • 相关文献

参考文献5

二级参考文献43

  • 1武美先,张学良,温淑花,李海楠.BP神经网络及其改进[J].太原科技大学学报,2005,26(2):120-125. 被引量:37
  • 2李兵.模糊优选递归神经网络模型及其在水利水电投资项目评价中的应用[J].重庆工学院学报,2006,20(2):138-142. 被引量:1
  • 3任勇生,韩宝坤.机械振动与噪声分析基础[M].北京:国防工业出版社,2006.
  • 4Iivarinen J, Rauhamaa J, Visa A. Unsupervised Segmentation of Sur- face Defects [ J ]. Pattern Recognition, 1996 (3) :356 - 360.
  • 5Salembier P. Multiresolution Decomposition and Adaptive Filtering with Rank Order Based Filters-application to Defect Detection [ J ]. In- ternational Conference on Acoustics, Speech, and Signal Processing, 1991 (4) :2389 -2392.
  • 6Estola K P. Adaptive Median Operators in Image Segmentation [ C ]// Proceedings of IECON. 1991 (3) :2510 -2515.
  • 7Ajay K. Noural Network Based Detection of Local Textile Defects[ J]. Pattern Recognition, 2003,36 ( 7 ) : 1645 - 1659.
  • 8Tsai D M, Hsioh C Y. Automated Surface Inspection for Directional Textures[ J ]. Image and Vision Computing, 1999,18:49 - 62.
  • 9Martin R,Heinrich B A. Direct Adaptive Mathod for Faster Back-propagation Learning: The RPROP Algorithrm[ C]//Proceedings of the IEEE Internetional Conference On Neural Net-works. New York: IEEE Press, 1993: 586 - 591.
  • 10HUANG N E, ATI'OH-OKINE N O. Hilbert-Huang trans- form in Engineering[M]. CRC Press,2005.

共引文献91

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部