摘要
以自行研制开发的深海水密圆形连接器外壳体为例,本文提出了一种基于机器视觉技术的壳体表面缺陷检测方法,阐述了机器视觉技术在壳体表面缺陷图像的处理过程及特征值提取过程,并在深海水密圆形连接器产品研发中连接器壳体缺陷检测进行应用。最后,构造了运用BP神经网络进行壳体表面缺陷识别的分类器,实现了壳体表面缺陷的准确识别与分类。
Based on a circular connector shell as an example,this paper expounds the application of machine vision technology in the defect detection of connector shell,and describes in detail the processing process and feature value extraction process of machine vision technology in the shell surface defect image.Finally,the classifier of shell surface defect recognition based on BP neural network is constructed to realize the accurate recognition and classification of shell surface defect.
作者
高文彬
庄申乐
王秀剑
周敏
宋冉冉
张成雷
GAO Wen-bin;ZHUANG Shen-Le;WANG Xiu-jian;ZHOU Min;SONG Ran-ran;ZHANG Cheng-lei(Shandong LongliElectronic CO., Ltd, Linyi, Shandong,276000;LINYI University, Linyi,Shandong, 276000)
出处
《机电元件》
2022年第1期42-46,共5页
Electromechanical Components
基金
2020年山东省泰山产业领军人才工程蓝色人才专项项目:带电插拔深海水密连接器研发及产业化。