期刊文献+

仿生器官芯片研究进展

Research Progress on Bioinspired Organs-on-Chips
下载PDF
导出
摘要 自然界在漫长的进化过程中创造了大量具备优异特性的天然材料,为人工材料的设计和制备以及相关学科的发展提供了源源不断的灵感来源。得益于材料科学和微加工制造工艺的飞速发展,受自然界天然材料启发而构建的仿生材料受到科研界的广泛关注并随之蓬勃发展。基于精细的形貌加工和组分设计,仿生材料已经被赋予自适应、自修复、自清洁以及雾收集等实用的功能。迄今为止,这些性能优越的仿生材料已经在医学、航空航天、生物医学以及日常生活等领域中展现出了良好的应用潜力。尤其是将功能性仿生材料作为生物支架材料进行细胞培养后并进一步集成到微流控芯片中,由此构建出的器官芯片具有小型化、低消耗和提供仿生微环境等优势,有望取代传统的细胞实验和动物实验,成为药物筛选和疾病模型研究的新平台。本文首先介绍了仿生材料的制备以及所获得仿生材料的特性或功能,然后重点总结了仿生材料在器官芯片中的研究进展,最后对该技术目前面临的挑战和未来的改进方向进行了展望。 In the long process of evolution,nature has created numerous natural materials with excellent properties,which provides inspiration for the design and fabrication of artificial materials,as well as the development of related disciplines.With the advances in material science and manufacturing technology,bio-inspired materials are attracting extensive research and thus experiencing a rapid development.Based on elaborate morphology and component design,bioinspired materials have acquired diverse functions such as self-adaptation,self-healing,self-cleaning,fog collection,etc.Up to date,the bioinspired materials with extraordinary performances have demonstrated practical values in medicine,aerospace,biomedical field,daily life,and so on.In particular,the bioinspired materials could serve as biological scaffolds for cell culture and be further integrated into microfluidic chips to construct organ-on-chips systems.Compared with traditional cell experiments and animal models,the organ-on-chips platform is more appropriate for drug screening and disease model research,which could be attributed to the advantages of miniaturization,low consumption and more physiological-like environment.In this review,after introducing the fabrication method,we present the specific functions or features of the derived bioinspired materials.The focus of this review is concentrated on the integration of bioinspired materials into organ-on-chips and their applications.Finally,the challenges and opportunities of current organ-on-chips are also prospected.
作者 孙灵钰 郭佳慧 汪雨 许冬雨 赵远锦 SUN Ling-Yu;GUO Jia-Hui;WANG Yu;XU Dong-Yu;ZHAO Yuan-Jin(State Key Laboratory of Bioelectronics,School of Biological Science and Medical Engineering,Southeast University,Nanjing 210096,China)
出处 《应用化学》 CAS CSCD 北大核心 2022年第1期18-34,共17页 Chinese Journal of Applied Chemistry
基金 国家重点研发计划(No.2020YFA0908200) 国家自然科学基金(Nos.52073060,61927805) 深圳市基础研究发展计划(No.JCYJ20190813152616459)资助。
关键词 仿生 细胞培养 器官芯片 微流控 药物筛选 Bioinspired Cell culture Organ-on-a-chip Microfluidics Drug screening
  • 相关文献

参考文献13

二级参考文献51

  • 1刘洪刚,程国安.生物材料的研究和展望[J].自然杂志,1998,20(6):330-333. 被引量:9
  • 2周本濂.复合材料的仿生研究[J].物理,1995,24(10):577-582. 被引量:11
  • 3汪日志.珍珠岩及天然骨的仿生制备研究[R].博士后研究工作报告,1995.
  • 4Meldrum F C, Wada V J, Nimmo D Letal. Synthesis of Inorganic Materials in Supramolecular Protein in Cages [J]. Nature,1991,349(21): 684 - 687.
  • 5Sellinger A, Weiss P M, Nguyen A, et al. Continous Self-Assembly of Organic-Inorganic Nanocomposite Coatings that Mimic Acre [ J ]. Nature, 1998,394 (16): 256 - 260.
  • 6Whites Ideas G M, Mathi as J P, Seto C T. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nano Structures[J]. Science, 1991, 254:1312 - 1319.
  • 7Bunker B C, Rieke P C, Tarasevich B J,et al. Cera micthin Film Formation on Functionalized Interfaces through Biomimetic Processing [ J ]. Science, 1994,264: 48 - 55.
  • 8Aksay A, Trau M, Manne S, et al. Biomimetic Pathways for Assembling in Organicth in Films[J]. Science, 1996,273: 892 - 898.
  • 9Groot K de, Geesink R G T, Klein C P A T, et al. The Research of Plasma Spraying of Titanium and Its Alloys[J]. J Biomed Mater, 1987, 21:1375 - 1378.
  • 10Luo Z S, Cui F Z, Li W Z. Highly Adhesive Hydro xyapatite Coatings on Titanium Substrates Prepared by Ion Beam Assisted Deposition [ J ]. J Biomed Mater, 1999,46: 80 - 86.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部