期刊文献+

高维数据下广义线性模型自适应桥惩罚估计的变量选择

Variables Selection of Adaptive Bridge Penalty Estimation for Generalized Linear Model under High Dimensional Data
下载PDF
导出
摘要 利用对数似然函数和自适应桥惩罚估计方法研究了高维数据下广义线性模型的参数估计和变量选择问题,利用对数似然函数和自适应桥方法构造惩罚估计目标函数,在适当的正则条件下,证明了自适应桥估计量的相合性和Oracle性质,通过数值模拟和实例分析验证了所提方法的有限样本性质及其优良性。 In this paper,variable selection and parameter estimation of generalized linear model with high-dimensional data is studied by using log-likelihood function and adaptive bridge penalty estimation method.By constructing penalty estimation objective function using log-likelihood function and adaptive bridge method,and under appropriate regular conditions,the consistency and Oracle properties of the adaptive bridge estimator are proved,and the finite sample properties of the proposed method are verified by numerical simulation and case analysis.
作者 夏亚峰 何佳 Xia Yafeng;He Jia(School of Science,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《甘肃科学学报》 2022年第1期7-15,共9页 Journal of Gansu Sciences
基金 国家自然科学基金(61663024)。
关键词 广义线性模型 高维数据 自适应桥估计 变量选择 参数估计 Generalized linear model High-dimensional data The adaptive bridge estimation Variable selection Parameter estimation
  • 相关文献

参考文献2

二级参考文献15

  • 1SPECKMAN P. Kernel smoothing in partial linear model[ J]. J Roy Statist Soc: Ser B, 1988, 50(3 ) : 413-436.
  • 2HECKMAN N E. Spline smoothing in a partly linear model[J]. J Roy Statist Soc: Ser B, 1986, 48(2) : 244-248.
  • 3FAN J Q, LI R Z. New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J]. J Amer Statist Assoc, 2004, 99(467) : 710-723.
  • 4CANDES E, TAO T. The Dantzig selector: statistical estimation when p is much larger than n (with discussion) [ J]. Ann Statist, 2007, 35(6): 2313-2351.
  • 5KNIGHT K, FU W. Asymptotics for Lasso-type estimators[J]. Ann Statist, 2000, 28(6) : 1356-1378.
  • 6EFRON B, HASTIE T, JOHNSTON I, et al. Least angle regression (with discusion) [J]. Ann Statist, 2004, 32(2) : 407- 451.
  • 7FAN J Q , LI R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[ J]. J Amer Statist Assoc, 2001, 96(456) : 1348-1360.
  • 8TIBSHIRANI R. Regression shrinkage and selection via the LASSO[J]. J Roy Statist Soc: Ser B, 1996, 58( 1 ) : 267-258.
  • 9JOHNSON B A. Variable selection in semiparametric linear regression with censored data[ J]. J Roy Statist Soc: Ser B, 2008, 70(2): 351-370.
  • 10LI R Z, LIANG H. Variable selection in semiparametric regression modeling[ J]. Ann Statist, 2008, 36( 1 ) : 261-286.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部