摘要
为了改善磁流变制动器的制动性能,提出一种并联液流通道结构的磁流变制动器。通过合理利用材料的导磁特性,使磁流变制动器内部的3层轴向阻尼间隙均被利用,有效提升了制动性能。建立了并联液流通道结构的磁流变制动器的力学模型,并对磁流变制动器进行了电磁场仿真分析;由仿真分析可知,磁流变制动器在转速为400 r/min时,最大制动转矩达到76.11 N·m。建立了磁流变制动器的温度场数学模型,对磁流变制动器的热源及生热率进行了理论分析;瞬态温度场仿真结果表明,在制动周期内磁流变制动器最高温度保持在磁流变液的工作范围内;因此并联液流通道结构的磁流变制动器能够正常工作。
In order to improve the braking performance of Magneto Rheological(MR)brake,a MR brake with a parallel fluid flow channel structure was proposed.Through reasonable use of the magnetic properties of the material,the three layers of axial damping gaps inside the brake were all utilized,which effectively improved the braking performance of the brake.The mechanical model of the MR brake with parallel fluid flow channels structure was established,and the electromagnetic field of the brake was simulated and analyzed.The simulation analysis shows that the maximum braking torque of the brake reaches 76.11 N·m at the rotational speed of 400 r/min.The temperature field mathematical model was established,and the heat source and heat generation rate of the MR brake were theoretically analyzed.The transient temperature field simulation results indicate that the maximum temperature of the MR brake during a braking period keep within the working range of the MR fluid,the MR brake with parallel fluid flow channels structure can work normally.
作者
吴礼繁
胡国良
喻理梵
李刚
WU Lifan;HU Guoliang;YU Lifan;LI Gang(Key Laboratory of Conveyance and Equipment,Ministry of Education,East China Jiaotong University,Nanchang 330013,China)
出处
《现代制造工程》
CSCD
北大核心
2022年第2期140-147,共8页
Modern Manufacturing Engineering
基金
国家自然科学基金项目(51765016)
南昌市车辆智能装备与控制重点实验室资助项目(2019-NCZDSY-004)。
关键词
磁流变制动器
并联液流通道结构
电磁场
温度场
Magneto Rheological(MR)brake
parallel fluid flow channels structure
electromagnetic field
temperature field