期刊文献+

深度学习重建改善胸部低剂量CT图像质量的价值 被引量:28

Application value of deep learning reconstruction to improve image quality of low-dose chest CT
原文传递
导出
摘要 目的:探讨深度学习重建(DLR)较混合迭代重建(Hybrid IR)在改善胸部低剂量CT(LDCT)图像质量方面的效果。方法:回顾性分析2020年10月至2021年3月在北京协和医院行胸部LDCT体检或因肺内结节定期复查的77例患者。对所有入组患者的影像资料进行不同算法重建,获得标准级别Hybrid IR图像、标准和强级别DLR图像。在3种图像的肺实质、主动脉、肩胛下肌及腋下脂肪内选取感兴趣区并测量其CT值和标准差,用于计算信噪比(SNR)和对比噪声比(CNR)。同时,由2名影像医师按照Likert 5分量表法对图像质量进行主观评分,且记录肺磨玻璃结节(GGN)的数量,并对其显示情况进行评分。2名医师评分不一致时由第3名医师评分决定。采用Kruskal-Wallis非参数检验对3种图像的主观和客观评分进行分析,若总体存在差异,则用Bonferroni校正检验进行组内两两比较。结果:3种图像在肺实质、主动脉、肩胛下肌及腋下脂肪处的CT值差异均无统计学意义( P均>0.05),而图像噪声、SNR和图像的CNR差异均有统计学意义( P均<0.05)。其中标准级别Hybrid IR图像、标准和强级别DLR图像的CNR分别为0.71(0.49,0.88)、1.06(0.78,1.32)和1.14(0.84,1.48)。标准级别和强级别DLR图像均较标准级别Hybrid IR图像的主观和客观噪声低及SNR和CNR高,差异均有统计学意义( P均<0.05)。在对主要解剖结构(肺裂、肺血管、气管和支气管、淋巴结、胸膜和心包)和GGN的显示上,标准级别和强级别DLR图像评分明显优于Hybrid IR图像,差异均有统计学意义( P均<0.05)。 结论:与Hybrid IR相比,DLR可以明显降低LDCT图像的噪声,且对GGN的显示良好,有助于在较低辐射剂量水平时保证图像质量,从而改善采用CT行肺癌筛查及肺结节随访的安全性。 Objective To evaluate the effectiveness of deep learning reconstruction(DLR)compared with hybrid iterative reconstruction(Hybrid IR)in improving the image quality in chest low-dose CT(LDCT).Methods Seventy-seven patients who underwent LDCT scan for physical examination or regular follow-up in Peking Union Medical College Hospital from October 2020 to March 2021 were retrospectively included.The LDCT images were reconstructed with Hybrid IR at standard level(Hybrid IR Stand)and DLR at standard and strong level(DLR Stand and DLR Strong).Regions of interest were placed on pulmonary lobe,aorta,subscapularis muscle and axillary fat to measure the CT value and image noise.The signal to noise ratio(SNR)and contrast to noise ratio(CNR)were calculated.Subjective image quality was evaluated using Likert 5-score method by two experienced radiologists.The number and features of ground-glass nodule(GGN)were also assessed.If the scores of the two radiologists were inconsistent,the score was determined by the third radiologist.The objective and subjective image evaluation were compared using the Kruskal-Wallis test,and the Bonferroni test was used for multiple comparisons within the group.Results Among Hybrid IR Stand,DLR Stand and DLR Strong images,the CT value of pulmonary lobe,aorta,subscapularis muscle and axillary fat had no significant differences(all P>0.05),but the image noise and SNR of pulmonary lobe,aorta,subscapularis muscle and axillary fat had significant differences(all P<0.05),and the CNR of images had significant difference(P<0.05),too.The CNR of Hybrid IR Stand images,DLR stand images and DLR strong images were 0.71(0.49,0.88),1.06(0.78,1.32)and 1.14(0.84,1.48),respectively.Compared with Hybrid IR images,DLR images had lower objective and subjective image noise,higher SNR and CNR(all P<0.05).The scores of DLR images were superior to Hybrid IR images in identifying lung fissures,pulmonary vessels,trachea and bronchi,lymph nodes,pleura,pericardium and GGN(all P<0.05).Conclusions DLR significantly reduced the image noise,and DLR images were superior to Hybrid IR images in identifying GGN in chest LDCT while maintaining superior image quality at relatively low radiation dose levels.Thus DLR images can improve the safety of lung cancer screening and pulmonary nodule follow-up by CT.
作者 王金华 宋兰 隋昕 田杜雪 杜华阳 赵瑞杰 王沄 陆晓平 马壮飞 许英浩 金征宇 宋伟 Wang Jinhua;Song Lan;Sui Xin;Tian Duxue;Du Huayang;Zhao Ruijie;Wang Yun;Lu Xiaoping;Ma Zhuangfei;Xu Yinghao;Jin Zhengyu;Song Wei(Department of Radiology,Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100730,China;Canon Medical Systems,Beijing 100024,China)
出处 《中华放射学杂志》 CAS CSCD 北大核心 2022年第1期74-80,共7页 Chinese Journal of Radiology
关键词 体层摄影术 X线计算机 辐射剂量 深度学习重建 磨玻璃结节 图像质量 Tomography,X-ray computed Radiation dosage Deep learning-based reconstruction Ground-glass nodule Image quality
  • 相关文献

参考文献2

二级参考文献15

  • 1张军,肖湘生,刘士远,陶晓峰,于红,李惠民.16层CT肺部筛查低剂量技术研究[J].中国医学计算机成像杂志,2006,12(3):175-178. 被引量:30
  • 2Kim MJ, Park CH, Choi SJ, et al. Muhidetector computed tomography chest examinations with low-kilovohage protocols in adults: effect on image quality and radiation dose. J Comput Assist Tomogr,2009 ,33 :416-421.
  • 3Nitta N, Takahashi H, Murata K, et al. Ultra low dose helical CT of the chest: evaluation in clinical cases. Radiat Med, 1999, 17: 1-7.
  • 4Lopes Pegna A, Picozzi G. Lung cancer screening update. Curr Opin Pulm Med,2009, 15:327-333.
  • 5Plurad D, Green D, Demetriades D, et al. The increasing use of chest computed tomography for trauma: is it being overutilized? J Trauma,2007,62:631-635.
  • 6Hatayama O, Kobayashi T, Fujimoto K, et al. Utility of single- slice high-resolution CT in upper lung field combined with low- dose spiral CT for lung-cancer screening in the detection of emphysema. Intern Ned ,2007,46 : 1519-1525.
  • 7Orlandi I, Moroni C, Camiciottoli G, et al. Spirometric-gated computed tomography quantitative evaluation of lung emphysema in chronic obstructive pulmonary disease : a comparison of 3 techniques, J Comput Assist Tomogr,2004,28: 437-442.
  • 8Heyer CM, Kagel T, Lemburg SP, et al. Transbronchial biopsy guided by low-dose MDCT: a new approach for assessment of solitary pulmonary nodules. AJR,2005 , 187:933-939.
  • 9彭芸,马大庆,李剑颖,张祺丰,刘玥,王蓓,曾津津.64层螺旋CT自动管电流调节技术在婴幼儿胸部低剂量CT扫描中应用的可行性研究[J].中华放射学杂志,2008,42(10):1045-1049. 被引量:40
  • 10周旭辉,彭振鹏,郑丽丽,李树荣,杨智云,孟悛非,陈星.64层螺旋CT肺动脉成像低管电压设置结合个体化对比剂应用的对照研究[J].中华放射学杂志,2009,43(7):704-707. 被引量:48

共引文献1475

同被引文献178

引证文献28

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部