期刊文献+

基于平衡样本的校准估计研究--以规模以下工业企业测算为例 被引量:2

Calibration Estimation Method Based on Balanced Samples--Taking the Measurement of Industrial Survey under the Designated Size as An Example
原文传递
导出
摘要 为解决规模以下工业企业调查中存在的样本代表性不足的问题,提出基于平衡样本的校准估计方法,并得出相应的估计量和估计量方差。该方法在抽样设计阶段采用了平衡抽样设计,在估计阶段采用了校准估计方法,较大限度地使用了辅助信息;通过数据分析得出基于平衡样本的校准估计方法要优于基于平衡抽样的HT估计方法。同时,为满足平衡变量间线性无关的假定,提出使用主成分分析、切片逆回归和切片平均方差估计三种方法对相关的平衡变量进行处理的思路。该方法对我国规模以下工业企业调查的完善具有理论与实践的双重意义,可适当的推广至我国政府统计的其他调查中。 In order to solve the problem of insufficient representativeness of samples in industrial enterprises under the designated size,this paper proposes a calitjration estimation method based on balanced samples,and obtains the corresponding estimator and estimator variance.This method adopts balanced sampling design in sampling design stage,calibration estimation method in estimation stage,and using auxiliary information to a great extent.Through data analysis,it is concluded that the calibration estimation method based on balanced samples is better than the HT estimation.At the same time,in order to satisfy the assumption of linearly independent between balanced variables,three methods of principal component analysis,sliced inverse regression and sliced average variance estimation are proposed to deal with the related balanced variables.This method has both theoretical and practical significance for the improvement the survey of industrial under the designated size of China,and can be appropriately extended to other surveys of government statistics.
作者 金勇进 姜天英 JIN Yong-jin;JIANG Tian-ying(Center for Applied Statistics,Renmin University of China,Beijing 100872,China;School of Information,Beijing Wuzi University,Beijing 101149,China;School of Statistics.Renmin University of China,Beijing 100872,China)
出处 《数理统计与管理》 CSSCI 北大核心 2022年第1期50-62,共13页 Journal of Applied Statistics and Management
基金 中国人民大学“中央高校建设世界一流大学(学科)和特色发展引导专项资金”。
关键词 平衡抽样 校准估计 主成分分析 切片逆回归 切片平均方差估计 规模以下工业企业 balanced sampling calibration estimation principal component analysis sliced inverse regression sliced average variance estimation industrial enterprises under the designated size
  • 相关文献

参考文献6

二级参考文献124

  • 1魏全龄.《数学规划引论》[M].北京航空航天大学出版社,..
  • 2高惠璇.《统计计算》[M].北京大学出版社,..
  • 3金勇进.《调查中的非抽样误差》[M].中国统计出版社,..
  • 4Fan J, Li R. Statistical challenges with high dimensionality: Feature selection in knowledge discovery [A]. In: Sanz-Sole M, Soria J, Varona J L, et al, eds. Proceedings of the International Congress of Mathematicians [C]. Zurich: European Mathematical Society, 2006, 3: 595-622.
  • 5Claeskens G, Hjort N L. Model Selection and Model Averaging [M]. Cambridge University Press, 2008.
  • 6Hocking R R. The analysis and selection of variables in linear regression [J]. Biometrics, 1976, 32: 1-49.
  • 7Guyon I, Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learn- ing Research, 2003, 3: 1157-1182.
  • 8Li X, Xu R. High-Dimensional Data Analysis in Cancer Research [M]. Springer, 2009.
  • 9Hesterberg T, Choi N H, Meier L, Fraley C. Least angle and 11 penalized regression: A review [Jl. Statistics Surveys, 2008, 2: 61-93.
  • 10Fan J, Lv J. A selective overview of variable selection in high dimensional feature space [J]. Statistica Sinica, 2010, 20: 101-148.

共引文献59

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部