期刊文献+

基于卷积神经网络的冗余机械臂运动学逆解求解 被引量:2

Inverse Kinematics Solution of Redundant Manipulator Based on Convolution Neural Networks
下载PDF
导出
摘要 针对7自由度冗余机械臂运动学逆解求解时间过长以及通用性差等问题,通过对LeNet模型进行改进,对卷积核、激活函数、损失函数、优化算法、模型结构与初始参数等进行设计与选择,建立了卷积神经网络模型来进行求解。对卷积神经网络模型进行轨迹跟踪实验验证,结果表明:所得到的机械臂关节角度平滑,轨迹跟踪最大误差小于3 mm;所建立的模型是有效的且精度较高;此方法可求解机械臂运动学逆解问题。 The inverse kinematics solution of 7-DOF redundant manipulator is complex,and the problems such as the long solving time or the poor generality need to be solved.In this paper,the LeNet model was improved.Then the convolution kernel,the activation function,the loss function,the optimization algorithm,the model structure and the initial parameters were designed and selected.On this basis,a convolution neural networks model was established to solve the inverse kinematics of 7-DOF manipulator.The convolution neural networks model was verified by trajectory tracking experiment and the maximum error of trajectory tracking was less than 3 mm.The results showed that the model was effective and accurate,and the method could be used to solve the inverse kinematics problem of the manipulator.
作者 刘世平 夏文杰 陈萌 马梓焱 黄元境 张文奇 LIU Shiping;XIA Wenjie;CHEN Meng;MA Ziyan;HUANG Yuanjing;ZHANG Wenqi(Shanghai Key Laboratory of Spacecraft Mechanism,Shanghai 201108,China;School of Mechanical Science&Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《载人航天》 CSCD 北大核心 2022年第1期10-15,共6页 Manned Spaceflight
基金 上海市空间飞行器机构重点实验室开放课题基金资助(18DZ2272200)。
关键词 卷积神经网络 7自由度 冗余机械臂 运动学逆解 convolution neural networks 7-DOF redundant manipulator inverse kinematics solution
  • 相关文献

参考文献4

二级参考文献30

  • 1吴爱国,郝润生.一种改进BP算法在机械手逆运动学中的应用[J].中国工程科学,2005,7(7):34-38. 被引量:4
  • 2Abraham A, Jain L, Goldberg R. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications [M]. USA: Springer, 2005.
  • 3Krieger C, Hosticka B J. Inverse Kinematics Computations with Modified CORDIC Iterations [C]// IEE Proceedings of Computer Digital Techniques. Japan: IEEE, 1996, 143(1): 87-92.
  • 4Manocha D, Canny J. Real Time Inverse Kinematics for General 6R Manipulators [C]// Proceedings of IEEE International Conference on Robotics and Automation. Raleign, North Carolina, USA: IEEE, 1992: 383-389.
  • 5Manseur R, Doty K L. Structural kinematics of 6-revolute-axis robot manipulators [J]. Mechanism and Machine Theory (S0094-114X), 1996, 31(5): 647-657.
  • 6Lu B L, Ito K. Regularization of inverse kinematics for redundant manipulators using neural network inversions [C]// Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE, 1995:2726-2731.
  • 7Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2002, 6(2): 182-197.
  • 8Deb K, Agrawal R B. Simulated binary crossover for continuous search space [J]. Complex Systems (S0891-2513), 1995, 9(6): 115-148.
  • 9Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [R]. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Gloriastrasse 35, CH-8092 Zurich, Switzerland: Swiss Federal Institute of Technology (ETH) Zurich, 2001.
  • 10Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transaction on Evolutionary Computation (S1089-778X), 1999, 3(4): 257-271.

共引文献38

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部