摘要
针对7自由度冗余机械臂运动学逆解求解时间过长以及通用性差等问题,通过对LeNet模型进行改进,对卷积核、激活函数、损失函数、优化算法、模型结构与初始参数等进行设计与选择,建立了卷积神经网络模型来进行求解。对卷积神经网络模型进行轨迹跟踪实验验证,结果表明:所得到的机械臂关节角度平滑,轨迹跟踪最大误差小于3 mm;所建立的模型是有效的且精度较高;此方法可求解机械臂运动学逆解问题。
The inverse kinematics solution of 7-DOF redundant manipulator is complex,and the problems such as the long solving time or the poor generality need to be solved.In this paper,the LeNet model was improved.Then the convolution kernel,the activation function,the loss function,the optimization algorithm,the model structure and the initial parameters were designed and selected.On this basis,a convolution neural networks model was established to solve the inverse kinematics of 7-DOF manipulator.The convolution neural networks model was verified by trajectory tracking experiment and the maximum error of trajectory tracking was less than 3 mm.The results showed that the model was effective and accurate,and the method could be used to solve the inverse kinematics problem of the manipulator.
作者
刘世平
夏文杰
陈萌
马梓焱
黄元境
张文奇
LIU Shiping;XIA Wenjie;CHEN Meng;MA Ziyan;HUANG Yuanjing;ZHANG Wenqi(Shanghai Key Laboratory of Spacecraft Mechanism,Shanghai 201108,China;School of Mechanical Science&Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《载人航天》
CSCD
北大核心
2022年第1期10-15,共6页
Manned Spaceflight
基金
上海市空间飞行器机构重点实验室开放课题基金资助(18DZ2272200)。
关键词
卷积神经网络
7自由度
冗余机械臂
运动学逆解
convolution neural networks
7-DOF
redundant manipulator
inverse kinematics solution