期刊文献+

Durbin法在阻尼梁动响应求解中的运用分析

Application analysis of Durbin method in solving dynamic response of damped beam
下载PDF
导出
摘要 运用铁木辛柯梁理论和K-V阻尼理论,研究了非比例阻尼梁在冲击载荷作用下的频域振动求解方法。推导采用了传统拉普拉斯正变换和基于Durbin公式的拉普拉斯反变换策略(统称拉普拉斯法),发展了阻尼梁系统的动力学方程解法。拉普拉斯法的推演同时涵盖了3种典型的梁边界条件,具有广泛的适用性。数值法的验证采用了特殊构造的比例阻尼点条件,并与基于模态叠加法的求解结果进行了对比分析,且数值算例充分考虑了数值参数和系统参数的影响。计算结果表明:在不同边界条件和受载状态下,拉普拉斯法与模态叠加法均能合理地计算出基本阻尼梁系统的动响应曲线,且两者的求解精度保持在同一量级;同时,捕捉到拉普拉斯法的求解精度会受到系统长细比等参数的影响。拉普拉斯法具有比传统实、复模态叠加法更易操作的特性,但其精度受到了算法固有参数和阶跃外载型式的影响,稳定性仍需进一步提高。 Based on Timoshenko’s beam theory and K-V damping model, the method for the frequency domain vibration solution of the non-proportionally damped beam under a stationary impact load is studied. The dynamic response of the damped beam is derived by introducing traditional Laplace transformation and Durbin’s Laplace inverse transformation(Laplace method). Three typical beam boundaries are taken into consideration in the derivation of Laplace method to demonstrate its applicability. Thereafter, the numerical method is validated under a special proportional damping condition and compared with the modal superposition method. The numerical experiments fully investigate the impact of algorithmic parameters and system parameters. The calculation results indicate that the dynamic responses of the fundamental damped beam system can be reasonably computed by the Laplace method under various boundary and loading conditions, showing comparable accuracy with the modal superposition method. However, the Laplace method is slightly affected by the slenderness ratio of the system. Although Laplace method is easier to manipulate than traditional modal superposition method, its accuracy is affected by its inherent numerical parameters and step external load type, and thus the algorithm stability needs further improvement.
作者 张夏阳 张凯 招启军 王博 ZHANG Xiayang;ZHANG Kai;ZHAO Qijun;WANG Bo(National Key Laboratory of Rotorcraft Aeromechanics,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第1期67-78,共12页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(12032012) 国家重点实验室基金(61422200101) 江苏高校优势学科建设工程。
关键词 结构力学 拉普拉斯变换 Durbin法 K-V阻尼梁 动响应 structural mechanics Laplace transformation Durbin method K-V damped beam dynamic response
  • 相关文献

参考文献6

二级参考文献49

  • 1金长义,陈茹仪,赵旭生.厚壁筒管的纵振动[J].辽宁工学院学报,1994,14(1):10-12. 被引量:6
  • 2邢誉峰,诸德超.用模态法识别结构弹性碰撞载荷的可行性[J].力学学报,1995,27(5):560-566. 被引量:26
  • 3Hong Liang ZHAO,Kang Sheng LIU,Chun Guo ZHANG.Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping[J].Acta Mathematica Sinica,English Series,2005,21(3):655-666. 被引量:3
  • 4诸德超,邢誉峰.点弹性碰撞问题之解析解[J].力学学报,1996,28(1):99-103. 被引量:38
  • 5Nashif A, Jones D, Henderson J. Vibration Damping [ M ]. New York: John Wiley & Sons, 1985.
  • 6Mead D J. Passive Vibration Control[ M]. Chichester:Jotm Wiley & Sons, 1998.
  • 7Jones D I G. Handbook of Viscoelastic Vibration Damping [ M 1. Chichester: John Wiley & Sons, 2001.
  • 8Kerwin J E M. Damping of flexural waves by a constrained viscoelastic layer [ J ]. Journal of the Acoustical Society of America, 1959, 31(7 ) :952-952.
  • 9Mead D J, Markus S. The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions [ J]. Journal of Sound and Vibration, 1969, 10 (2) : 163-175.
  • 10Yan M J, Dowell E H. Governing equations of vibrating constrained-layer damping sandwich plates and beams[J]. Journal of Applied Mechanics, 1972, 94: 1041-1047.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部