期刊文献+

Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials 被引量:1

下载PDF
导出
摘要 Metamaterials composed of metallic antennae arrays are used as they possess extraordinary optical transmission(EOT)in the terahertz(THz)region,whereby a giant forward light propagation can be created using constructive interference of tunneling surface plasmonic waves.However,numerous applications of THz meta-devices demand an active manipula-tion of the THz beam in free space.Although some studies have been carried out to control the EOT for the THz region,few of these are based upon electrical modulation of the EOT phenomenon,and novel strategies are required for act-ively and dynamically reconfigurable EOT meta-devices.In this work,we experimentally present that the EOT resonance can be coupled to optically reconfigurable chalcogenide metamaterials which offers a reversible all-optical control of the THz light.A modulation efficiency of 88%in transmission at 0.85 THz is experimentally observed using the EOT metama-terials,which is composed of a gold(Au)circular aperture array sitting on a non-volatile chalcogenide phase change ma-terial(Ge2Sb2Te5)film.This comes up with a robust and ultrafast reconfigurable EOT over 20 times of switching,excited by a nanosecond pulsed laser.The measured data have a good agreement with finite-element-method numerical simula-tion.This work promises THz modulators with significant on/off ratios and fast speeds.
出处 《Opto-Electronic Science》 2022年第1期26-36,共11页 光电科学(英文)
  • 相关文献

参考文献7

二级参考文献22

共引文献57

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部