期刊文献+

空间3-UPS并联机构关节约束反力分析 被引量:2

Analysis of Joint Constraint Reaction of Spatial 3-UPS Parallel Mechanism
下载PDF
导出
摘要 针对空间机构系统关节力计算复杂,对3-UPS并联机构关节约束反力进行力学分析,在考虑拉格朗日乘子与空间机构约束反力关系的情况下,基于拉格朗日增广法计算了该空间并联机构的关节反力,同时用牛顿欧拉法对其计算结果进行验证,通过Adams软件与Matlab软件联合仿真,并将两种计算结果进行对比分析。结果表明,两种方法计算所得该空间机构关节约束反力的大小基本一致,误差在0.5%~1.2%之间,误差相对较小,验证了通过引入拉格朗日乘子,运用拉格朗日增广法计算空间机构关节约束反力方法的正确性,为空间机构力学分析提供了一定的参考依据。 In light of the complexity of calculation of joint force of spatial mechanism system,a mechanical analysis of joint constraint reaction of 3-UPS Parallel mechanism is carried out.Considering the relationship between Lagrange multiplier and constraint reaction of spatial mechanism,the joint reaction of the spatial parallel mechanism is calculated based on Lagrange augmented method.At the same time,the calculation results are verified by Newton Euler method and Adams and Matlab Software co-simulation,and a comparative analysis of the two results is conducted.The results show that the size of the joint constraint reaction of the spatial mechanism calculated by the two methods is basically the same,and the error is between 0.5%and 1.2%,which is relatively small.The correctness of the method of using Lagrange multiplier and Lagrange augmented method to calculate the joint constraint reaction of spatial mechanism is verified,and a certain reference for the mechanical analysis of spatial mechanism is provided.
作者 史宝周 魏伟 徐秀杰 李振凯 Shi Baozhou;Wei Wei;Xu Xiujie;Li Zhenkai(China Academy of Machinery Science&Technology Qingdao Branch Co.,Ltd.,Qingdao 266300,China)
出处 《机械传动》 北大核心 2022年第2期73-77,共5页 Journal of Mechanical Transmission
关键词 空间并联机构 关节约束反力 拉格朗日乘子 牛顿欧拉法 Spatial parallel mechanism Joint restraint reaction Lagrange multiplier Newton Euler method
  • 相关文献

参考文献7

二级参考文献70

  • 1刘刚,张子达,邹广德,诸文农.工程机械铰接系统铰点动态约束反力的研究[J].农业工程学报,1996,12(1):132-136. 被引量:2
  • 2郭永新,赵喆,刘世兴,王勇,朱娜,韩晓静.非完整系统Chetaev动力学和vakonomic动力学的等价条件[J].物理学报,2006,55(8):3838-3844. 被引量:11
  • 3梁立孚,胡海昌,陈德民.非完整系统动力学的Lagrange理论框架[J].中国科学(G辑),2007,37(1):76-88. 被引量:3
  • 4Schiehlen W. Multi-body system dynamics: roots and perspectives [J]. Multibody System Dynamics, 1997, 1: 149--188.
  • 5Brogliato B, Ten Dam A A, Paoli L, Genot F, Abadie M. Numerical simulation of finite dimensional multi-body non-smooth mechanical systems [J]. Applied Mechanics Reviews, 2002, 55(2): 107--150.
  • 6Werner Schiehlen, Nils Guse, Robert Seifried. Multi-body dynamics in computational mechanics and engineering applications [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 5509--5522.
  • 7Klepp HJ. Cases with several and with no solutions of the initial value problem and the corresponding states of sys- tems with friction-affected constraints [J]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2003, 217 (1): 51--61.
  • 8Bayo E. An efficient computional method for real time multibody dynamic simulation in fully Cartesian coordinates [J]. Computer Methods in Applied Mechanical Engineering, 1991, 92: 377--395.
  • 9王琪,陆启韶,黄克累.多体系统动力学Lagrange方法的进展[J].力学与实践,1997,19(3):1-6. 被引量:8
  • 10Gallardo J, Rico J M, Frisoli A, et al.. Dynamics of parallel manipulators by means of screw theory [J]. Mechanism and Machine Theory, 2003,38 (11): 1113-1131.

共引文献42

同被引文献26

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部