期刊文献+

烧结镁砂煅烧竖炉内气固传热特性数值分析 被引量:1

Numerical Analysis of Gas-Solid Heat Transfer Characteristics in Shaft Furnace for Calcination of Sintered Magnesia
下载PDF
导出
摘要 以年产5×10^(4) t烧结镁砂竖炉为研究对象,基于多孔介质理论,建立竖炉内三维稳态气固流动传热模型,并模拟研究竖炉热工参数对床层内气固传热过程的影响.研究结果表明:冷却风流量每增加10%,出口烟气温度降低50℃,出口球团温度降低80℃;冷却段长度每增加5%,出口球团温度降低25℃.以竖炉出口烟气温度和球团温度为优化目标函数,得到竖炉最适宜结构和操作参数,即煅烧风流量为2606.67 m^(3)/h,冷却风流量为2203.34 m^(3)/h,预热煅烧段长度为6.64 m,冷却段长度为11.70 m.在此竖炉运行工况下,出口球团温度为288.75℃,出口烟气温度为414.32℃. Based on the theory of porous media,a three-dimensional heat transfer model for steady gas-solid flow was established for a shaft furnace of sintered magnesia with annual output of 5×10^(4) t.The influences of thermal parameters of the shaft furnace on the gas-solid heat transfer process in the bed were simulated.The results show that,with increasing the cooling air flow by 10%,the outlet flue gas temperature decreases by 50℃,and the outlet pellet temperature decreases by 80℃.When the cooling section length increases by 5%,the outlet pellet temperature decreases by 25℃.Taking the flue gas temperature and pellet temperature at the shaft furnace outlet as the optimization objective functions,the optimum structure and operation parameters of shaft furnace are obtained,including the calcination air flow of 2606.67 m^(3)/h,the cooling air flow of 2203.34 m^(3)/h,the preheating calcination section of 6.64 m,and the cooling section of 11.70 m.Under this working condition of the shaft furnace,the outlet pellet temperature is 288.75℃,and the outlet flue gas temperature is 414.32℃.
作者 张晓虎 张晟 赵亮 董辉 ZHANG Xiao-hu;ZHANG Sheng;ZHAO Liang;DONG Hui(School of Metallurgy,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第1期40-47,共8页 Journal of Northeastern University(Natural Science)
基金 辽宁省“兴辽英才计划”项目(XLYC1802122)。
关键词 氧化镁球团 煅烧竖炉 气固传热 数值模拟 参数优化 magnesia pellets shaft furnace for calcination gas-solid heat transfer numerical simulation parameter optimization
  • 相关文献

参考文献8

二级参考文献21

  • 1董辉,蔡九菊,王国胜,杨俊.球团竖炉内气体流动的数值模拟[J].东北大学学报(自然科学版),2006,27(5):509-512. 被引量:6
  • 2吕宗冠.海城市镁砂窑污染现状及防治对策[J].辽宁城乡环境科技,2007,27(3):29-30. 被引量:6
  • 3Negrini A I,Freire J T. Fluid dynamics of air in a packedbed : velocity profiles and the continuum model assumption[J ]. Brazilian Journal of Chemical Engineering, 1999,16(4):421 -432.
  • 4Paterson W R,Berresford E J. Gas flow distribution inmoving beds of monosized particles [ J ]. ChemicalEngineering Science ,2000,55 (17) :3515 -3527.
  • 5Yin F H,Wang Z C. Experimental studies of liquid flowdistribution in a random packed columns [ J ]. CanadianJournal of Chemical Engineering ,2000,78 (3) :449 -457.
  • 6Moise A,Tudose R Z. Air isothermal flow through packedbeds[ J]. Experimental Thermal and Fluid Science ,199^, 18(3):134-141.
  • 7Finnemore E J,Franzini J B.流体力学及其工程应用[M].北京:清华大学出版社,2003.
  • 8Stank V, Szekely J. The effect of non-uniform porosity incausing flow maldistribution in isothermal packed beds[ J].Canadian Journal of Chemical Engineering ,1973,51(3) :22-30.
  • 9Kincaid D, Cheney W. Numerical analysis: mathematics ofscientific computing [ M ]. 3rd ed. San Diego : AmericanMathematical Society ,2003 :572 -596.
  • 10佟春杰.辽宁镁质材料产业发展战略研究[J].产业与科技论坛,2009,8(1):64-66. 被引量:6

共引文献24

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部