期刊文献+

Image-denoising algorithm based on improved K-singular value decomposition and atom optimization 被引量:7

下载PDF
导出
摘要 The traditional K-singular value decomposition(K-SVD)algorithm has poor imagedenoising performance under strong noise.An image-denoising algorithm is proposed based on improved K-SVD and dictionary atom optimization.First,a correlation coefficient-matching criterion is used to obtain a sparser representation of the image dictionary.The dictionary noise atom is detected according to structural complexity and noise intensity and removed to optimize the dictionary.Then,non-local regularity is incorporated into the denoising model to further improve image-denoising performance.Results of the simulated dictionary recovery problem and application on a transmission line dataset show that the proposed algorithm improves the smoothness of homogeneous regions while retaining details such as texture and edge.
出处 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第1期117-127,共11页 智能技术学报(英文)
基金 supported by Science and Technology Research Program of Hubei Provincial Department of Education(T201805) Major Technological Innovation Projects of Hubei(No.2018AAA028) National Natural Science Foundation of China(Grant No.61703201) NSF of Jiangsu Province(BK20170765).
  • 相关文献

参考文献4

二级参考文献29

  • 1Gonzalez R C, Woods R E. Digital image processing [ M ]. Engle- wood Cliffs, NJ: Pantice-Hall,2002.
  • 2Maggioni M, Katkovnik V, Egiazarian K. Nonloeal ransform-do- main filter for volumetric data denoising and reconstruction [ J ]. IEEE Transactions on Image Processing,2013,22( 1 ) :1 19-133.
  • 3Elad M, Figueiredo M A T, Yi M. On the role of sparse and redun- dant representations in image processing [ J ]. Proceeding of the IEEE,2010,98 (6) :972-982.
  • 4Elad M, Aharon M. Image denoising via sparse and redundant repre- sentations over learned dictionaries [ J ]. IEEE Transactions on Im- age Processing ,2006,15 ( 12 ) :3736-3745.
  • 5Huang Hui-juan, Yu Jing, Sun Wei-dong. Superresolution mapping using multiple dictionaries by sparse representation [ J ]. IEEE Geo- science and Remote Sensing Letters ,2014,11 (12) :2055-2059.
  • 6Aharon M,Elad M, Bmckstein A. K-SVD: an algorithm for desig- ning overcomplete dictionaries for sparse representation [ J ]. IEEE Transactions on Signal Processing ,2006,54 ( 11 ) :4311-4322.
  • 7Buades A, Coil B, Morel J M. A non_local algorithm for image de- noising [ C ]. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:60-65.
  • 8Ram I, Elad M, Cohen I. Image denoising using NL-means via smooth patch ordering [ J ]. IEEE Transactions on Image Process- ing,2013,15(12) :3736-3745.
  • 9Dong Wisheng, Li Xin, Zhang Lei, et al. Sparsity-based image de- noising via dictionary learning and structural clustering[ C ]. In Pro- ceedings of IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition ,2011:457-464.
  • 10Tropp J A, Gilbert A C. Signal recovery from random measure- ments via orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory ,2007,53 (12) :4655-4666.

共引文献32

同被引文献33

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部