期刊文献+

概化理论两侧面设计方差分量及其变异量估计方法比较

Comparison of Methods for Estimating Variance Components and Their Variabilities in Generalizability Theory Based on Two-facet Designs
下载PDF
导出
摘要 文章针对正态分布数据,对比Traditional方法、Bootstrap方法和MCMC方法在两侧面交叉设计(p×i×h)和两侧面嵌套设计(p×(i:h))下各个方差分量的估计精度,为实际应用提供参考。使用R软件模拟1000批数据,并在R软件上实现三种方法的方差分量及其变异量估计。结果表明:(1)相较于Traditional方法和MCMC方法,相同条件下,Bootstrap方法估计的方差分量及其变异量结果更为理想;(2)对于两侧面交叉设计和两侧面嵌套设计,在正态分布数据下,建议优先使用Bootstrap方法。 Aiming at normal distribution data, this paper compares the estimation accuracy of each variance component of Traditional method, Bootstrap method and MCMC method under two-facet cross design(p × i × h) and two-facet nested design( p ×(i:h)), which provides a reference for practical application. R software is used to simulate 1000 batches of data, and the variance component and variance estimation of the three methods are realized on R software. The results are as follows:(1) Compared with Traditional method and MCMC method, the results of variance component and variation estimated by Bootstrap method are more ideal under the same conditions;(2) The Bootstrap method is recommended to be used in the case of normally distributed data for the two-facet cross design and two-facet nested design.
作者 黎光明 王幸君 潘语熙 Li Guangming;Wang Xingjun;Pan Yuxi(School of Psychology,South China Normal University,Guangzhou 510631,China;Center for Studies of Psychological Application,South China Normal University,Guangzhou 510631,China)
出处 《统计与决策》 CSSCI 北大核心 2022年第3期50-55,共6页 Statistics & Decision
基金 广东省自然科学基金面上项目(2021A1515012516)。
关键词 概化理论 方差分量估计 方差分量变异量估计 BOOTSTRAP方法 MCMC方法 generalizability theory variance component estimation estimation of variabilities of variance components Bootstrap method MCMC method
  • 相关文献

参考文献2

二级参考文献17

  • 1田清源.主观评分中多面Rasch模型的应用[J].心理学探新,2006,26(1):70-73. 被引量:16
  • 2Brennan,R.L.(1983).Elements of general&ability theory.Iowa City,IA:American College Testing Program.
  • 3Engelhard,G.J.(1992).The measurement of writing ability with a many-facet Rasch Model.Applied Measurement in Education,(5),171-191.
  • 4Linacre,J.M.(2002).What do infit,outfit,mean-square and standardized mean? Rnsch Measurement Transactions,16,118-121.
  • 5Linacre,J.M.(2003).Facets-Rasch measurement computer program.Chicago,IL:MESA Press.
  • 6Richard,R.S.,Suzanne,R.,& William,S.B.(2005).A comparison of generalizability theory and many-facet Rasch measurement in an analysis of college sophomore writing.Assessing Writing,(9),239-261.
  • 7Saal,F.E.,Downey,R.G.,& Lahey,M.A.(1980).Rating the ratings:Assessing the psychometric quality of rating data.Psychological Bulletin,88 (2),413-428.
  • 8Brennan, R. L. (2001). Manual for mGENOVA. IA: Iowa Testing Programs. Iowa City: University of Iowa.
  • 9Casabianca, J. M., Lockwood, J. R., & McCaffrey, D. F. (2015). Trends in classroom observation scores. Educational and Psychological Measurement, 75(2), 311-337.
  • 10Meyer, J. P., Liu, X., & Mashbum, A. J. (2014). A practical solution to optimizing the reliability of teaching observation measures under budget constraints. Educational and Psychological Measurement, 74(2), 280-291.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部