期刊文献+

展弦比对船用燃气轮机低压压气机跨音级性能影响研究

Research on Influence of Aspect Ratio on Performance of Marine Gas Turbine Low Pressure Compressor Transonic Stage
原文传递
导出
摘要 为了揭示展弦比对压气机跨声速级气动性能的影响机理,进一步提高舰船燃气轮机低压压气机的气动性能,采用数值模拟方法研究了展弦比对某船用燃气轮机低压压气机跨声速级气动性能的影响。结果表明:展弦比对压气机性能的影响受到扭曲规律和反动度等参数选择的影响,对于不同的扭曲方式和反动度分别存在着效率最优展弦比和喘振裕度最优展弦比,且在典型的船用燃气轮机压气机的负荷水平下,效率最优展弦比要大于喘振裕度最优展弦比,通过数值模拟手段和线性回归方法在一定范围内给出了其定量的关系。 In order to reveal the influence mechanism of aspect ratio on the aerodynamic performance of compressor transonic stage and further improve the aerodynamic performance of low pressure compressor of marine gas turbine,the impact of aspect ratio on transonic stage aerodynamic performance of a certain marine gas turbine low pressure compressor was studied by numerical simulation method.The results show that the influence of aspect ratio on compressor performance is influenced by the selection of parameters such as twisting law and reaction degree,etc.There are optimal aspect ratios of efficiency and surge margin for different torsion modes and reaction degrees respectively.And under the load level of typical marine gas turbine compressor,the optimal aspect ratio of efficiency is greater than that of surge margin.The quantitative relationship is given in a certain range by means of numerical simulation and linear regression.
作者 徐宁 朱青芳 侯亚欣 姜斌 XU Ning;ZHU Qing-fang;HOU Ya-xin;JIANG Bin(No.703 Research Institute of CSSC,Harbin,China,150078;National Engineering Laboratory for Marine and Ocean Engineering Power System-Marine Engineering Gas Turbine laboratory,Harbin,China,150078;College of Power and Energy Engineering,Harbin Engineering University,Harbin,China,150001)
出处 《热能动力工程》 CAS CSCD 北大核心 2022年第1期57-64,共8页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金区域创新发展联合基金(U20A20298) 国家科技重大专项(2017-II-0006-0019,2017-I-0009-0010)。
关键词 跨音速 展弦比 效率 喘振裕度 反动度 transonic aspect ratio efficiency surge margin reaction degree
  • 相关文献

参考文献1

二级参考文献25

  • 1[1]Supplee H H.The Gas Turbine [M].Philadelphia:J.B.Lippin-cott Co,1910
  • 2[2]Dunham J A R. Howell-Father of the British Axial Compressor[R].ASME 2000-GT-8.
  • 3[3]Vollmuth M. MTU to Manufacture Core Engine Component:High-pressure Compressor for PW6000[R].MTU Report,2002.
  • 4[4]Freeman J H. Design of A Multi-spool, High-speed,CounterRotating,Aspirated Compressor[R]. AD-A385286,2000.
  • 5[8]航空航天工业部高效节能发动机论文集编委会.高效节能发动机文集(续集二):核心机与低压部件组合体设计试验[M].北京:航空航天工业部第六二八所,1993.
  • 6[9]Stanley W K. General Electric Tests Forward Fan Technology[J]. Aviation Week & Space Technology, 1996,9.
  • 7[10]Rabe D C, Szucs P N, Crall D W, et al. Forward Swept Rotor Studies in Multistage Fans with Inlet Distortion[R]. ASME 2002-GT-30326.
  • 8[11]Parker R. Rolls-Royce Aeroengine Technology-A Vision of Excellence[R].Rolls-Royce & AVIC Symposium, 2003.
  • 9[12]Ni R H. Advanced Modeling Techniques for New Commercial Engines[R]. ISABE 99-7043.
  • 10[13]Gummer V,Wenger U, Kau H P. Using Sweep and Dihedral to Control Three Dimensional Flow in Transonic Stators of Axial Compressors[R].ASME 2000-GT-0491.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部