期刊文献+

基于KNN分类器的地表冻融判别研究

RESEARCH ON DISCRIMINATION OF SURFACE FREEZING AND THAWING BASED ON KNN CLASSIFIER
下载PDF
导出
摘要 以青藏高原的5个地区为研究对象,分别是阿里观测网、黑河观测网、玛曲观测网、那曲观测网和帕里观测网,结合SMAP被动微波辐射计L波段的亮温数据和AMSR2被动微波辐射计Ka波段的亮温数据构建了二维时间序列,然后用KNN分类器对5个观测网的土壤冻融状态进行分类。最后根据实测的土壤5 cm深处的温度数据分别验证5个观测网的分类结果,并计算准确率。实验结果表明在湿润的那曲观测网中分类效果最好,分类的准确率为97.14%;在比较干旱的阿里地区分类精度最低,分类的准确率为88.98%;五个观测网的平均准确率为94.23%。 Taking the five areas of Qinghai-Tibet High as the research objects,they are the Ali Observation Network,Heihe Observation Network,Maqu Observation Network,Naqu Observation Network and Pali Observation Network,combined with the brightness temperature data of the L-band of the SMAP passive microwave radiometer and the AMSR2 passive The Ka-band brightness temperature data of the microwave radiometer constructs a two-dimensional time series,and then uses the KNN classifier to classify the soil freeze-thaw state of the five observation networks.Finally,the classification results of the five observation networks were verified according to the measured soil temperature data at a depth of 5 cm,and the accuracy rate was calculated.The experimental results show that the classification effect is the best in the humid Nagqu observation network,with a classification accuracy of 97.14%;the classification accuracy is the lowest in the relatively arid Ali area,with a classification accuracy of 88.98%;the average accuracy of the five observation networks is 94.23%.
作者 彭利华 卢涵宇 袁咏仪 PENG Li-hua;LU Han-yu;YUAN Yong-yi(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,Guizhou,China;Guizhou Liupanshui Sanlida Technology Co.,Ltd.,Liupanshui 532001,Guizhou,China)
出处 《云南地理环境研究》 2021年第6期23-29,共7页 Yunnan Geographic Environment Research
基金 国家自然科学基金项目“基于L波段主被动微波遥感观测的地表冻融状态监测算法研究”(41673315) 贵州省自然科学基金项目“基于遥感大数据的贵州省典型流域水文模拟研究”(1Y155[2020]).
关键词 青藏高原 亮温 被动微波 冻融 Qinghai-Tibet Plateau bright temperature passive microwave freeze and thaw
  • 相关文献

参考文献3

二级参考文献25

  • 1毛克彪,施建成,李召良,覃志豪,贾媛媛.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感,2005,17(3):14-17. 被引量:33
  • 2Lee K H,Anagnostou E N.A combined passive/active microwave remote sensing approach for surface variable retrieval using Tropical Rainfall Measuring Mission observations[J].Remote,Sensing of Environment,2004,92:112-125.
  • 3Narayan U,Lakshmi V,Jackson T J.High resolution change estimarion of soil moisture using L-band radiometer and radar obsorvations made during the SMEX02 experiments[J].IEEE Transactions On Geoseience and Remote Sensing,2006,44:1 545-1 554.
  • 4Ulaby F T,Batlivala P,Dobson M.Microwave backseatter dependenoe on surface mushness,soil moisture and soil texture:Part Ⅰ-bare soil[J].IEEE Transactions on Instrumentation and Measurement,1978,16:286-295.
  • 5Fung A K,Li Zongqian,Chen K S.Backscattering from a randomly rough dielectric surface[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):195-200.
  • 6Chen K S,Wu T D,Tsang L,et al.Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J].IEEE Transactions On Geoscienes and Remote Sensing,2003,41(1):90-101.
  • 7Shi J,Chen K S,Li Q,et al.A parameterized surface reflectivity medel and estimation of bare surface soil moisture with L-band Radiometer[J].IEEE Transactions on Geoscienee and Remote Sensing,2002,40(12):2 674-2 686.
  • 8Oh Y,Sarabandi K,Ulaby F T.Semi-empirical model of the ensemble averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(6):1 348-1 355.
  • 9Dobson M C,Ulaby F T,Hallikainen M T,et al.Microwave dielectric behavior of wet soil Part Ⅱ:Dielectric mixing models[J].IEEE Transaction on Geoscience and Remote Sensing,1985,23:35-46.
  • 10Zhao Shaojie,Zhang Lixin,Zhang Zhongjun.Design and testof a new truck-mounted microwave radiometer for remote sens-ing research[].Proceedings of IGARSS‘.2008

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部