期刊文献+

基于局部纹理特征的沥青路面裂缝检测方法 被引量:9

Asphalt pavement crack detection method based on local texture features
下载PDF
导出
摘要 针对不均匀光照和阴影等因素影响沥青路面图像中裂缝检测误识别问题,提出一种基于局部纹理特征的沥青路面裂缝检测方法。设计结构保持型Retinex算法将高频的纹理信号从低频光照信号和结构型纹理中分离,改进百分比阈值算法,获取高信噪比的裂缝区域二值图像,建立高置信裂缝段的特征匹配机制,利用圆形度、面积、不同置信裂缝的类间欧氏距离进行置信连通域邻域去噪,实现裂缝区域的提取。实验结果表明,该算法改善了不均匀光照和阴影情况下裂缝识别的准确性。 Aiming at the problem that uneven illumination and shadow affect the recognition of cracks in asphalt pavement image,a method of asphalt pavement crack detection based on local texture features was proposed.The structure preserving Retinex algorithm was designed to separate the high-frequency texture signal from the low-frequency illumination signal and the structural texture,and the percentage threshold algorithm was improved to obtain the binary image of the fracture region with high signal-to-noise ratio.The feature matching mechanism of high confidence fracture segment was established,and the noise of confidence connected region neighborhood was removed using circularity,area and Euclidean distance between different confidence cracks to extract the fracture area.Experimental results show that the proposed method improves the accuracy of crack recognition under the condition of uneven illumination and shadow.
作者 陶健 田霖 张德津 胡成雪 何莉 TAO Jian;TIAN Lin;ZHANG De-jin;HU Cheng-xue;HE Li(School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068,China;Algorithm Department,Wuhan Wuda Zoyon Science and Technology Co.Ltd,Wuhan 430223,China;Guangdong Key Laboratory for Urban Informatics,Shenzhen University,Shenzhen 518060,China;College of Mechatronics and Control Engineering,Shenzhen University,Shenzhen 518060,China)
出处 《计算机工程与设计》 北大核心 2022年第2期517-524,共8页 Computer Engineering and Design
基金 国家重点研发计划基金项目(2019YFB2102703) 深圳市科创委面上基金项目(20200125)。
关键词 沥青路面 裂缝检测 邻域去噪 特征匹配 图像处理 asphalt pavement crack detection neighborhood denoising feature matching image processing
  • 相关文献

参考文献5

二级参考文献35

  • 1王华,朱宁,王祁.公路路面分形纹理特征分析和分类[J].哈尔滨工业大学学报,2005,37(6):816-818. 被引量:7
  • 2Wang K C P,Gong W,Li X,et al.Data analysis of real-time system for automated distress survey[J].Transportation Research Record:Journal of the Transportation Research Board,2002,1806(1):101-109.
  • 3Meignen D,Bernadet M,Briand H.One application of neural networks for detection of defects using video data bases:identification of road distresses[C]//Database and Expert Systems Applications,1997.Proceedings.,Eighth International Workshop on.IEEE,1997:459-464.
  • 4Klepka A,Staszewski W J,Jenal R B,et al.Nonlinear acoustics for fatigue crack detection-experimental investigations of vibro-acoustic wave modulations[J].Structural Health Monitoring,2012,11(2):197-211.
  • 5Ling L,Peikang H,Xiaohu W,et al.Image edge detection based on beamlet transform[J].Systems Engineering and Electronics,Journal of,2009,20(1):1-5.
  • 6Jiang X,Ma Z J,Ren W X.Crack detection from the slope of the mode shape using complex continuous wavelet transform[J].ComputerAided Civil and Infrastructure Engineering,2012,27(3):187-201.
  • 7Zou Q,Cao Y,Li Q,et al.Crack Tree:Automatic crack detection from pavement images[J].Pattern Recognition Letters,2012,33(3):227-238.
  • 8Yamaguchi T,Hashimoto S.Fast crack detection method for large-size concrete surface images using percolation-based image processing[J].Machine Vision and Applications,2010,21(5):797-809.
  • 9李清泉,胡庆武.基于图像自动匀光的路面裂缝图像分析方法[J].公路交通科技,2010,27(4):1-5. 被引量:21
  • 10褚燕利.基于灰度图像及其纹理特性的裂缝特征提取[J].公路,2010,55(7):131-136. 被引量:8

共引文献90

同被引文献65

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部