期刊文献+

数值天气预报多要素深度学习融合订正方法 被引量:21

Multi-element deep learning fusion correction method for numerical weather prediction
下载PDF
导出
摘要 数值天气预报作为现代天气预报的主流技术方法,近年来不断朝着精细化方向发展,但预报误差至今仍无法避免。文中在CU-Net模型中引入稠密卷积模块形成数值预报要素偏差订正模型Dense-CUnet,在此基础上进一步融合多种气象要素和地形特征构建了Fuse-CUnet模型,开展不同模型的偏差订正试验和对比分析。以均方根误差(RMSE)和平均绝对误差(MAE)作为评分标准,通过与ECMWF原始预报结果、ANO方法订正结果以及CU-Net方法订正结果进行对比,证明Dense-CUnet模型可有效改进数值预报订正效果,融合多个要素的Fuse-CUnet模型能使订正效果有更大提升。 As the mainstream technology of modern weather forecast,numerical weather prediction(NWP)has been developing in the direction of refinement in recent years,yet the prediction error is still unavoidable.Therefore,it is of great significance to improve the accuracy of numerical weather forecast by revising the results.A traditional method of prediction correction,i.e.,the Anomaly Numeral-correction with Observations(ANO),is used to correct the forecast based on statistics of historical data.Results indicate that this method has a good effect.As an emerging method,deep learning has been gradually applied to the field of meteorology in recent years,and has achieved significant results in precipitation prediction and cloud image recognition.Domestic scholars in China used CU-Net,a deep learning model to correct the deviations of the model grid point forecast data of 2 m temperature,2 m relative humidity and 10 m wind respectively from the European Centre for Medium-Range Weather Forecast(ECMWF),which significantly improved the forecast compared with the ANO method.Based on the above tests,this paper uses dense convolutional structure network model to improve the CU-Net model and forms a new deviation correction model for NWP,which is named as Dense-CUnet,and further develops a deviation correction model named Fuse-CUnet to integrates multiple meteorological elements from NWP and topographic features.Deviation correction tests and comparative analysis of these different models have been carried out.Root mean square error(RMSE)and mean absolute error(MAE)are used as the scoring metrics.By comparing with the original prediction results of ECMWF and the results revised by the ANO and CU-Net methods,it is found that the dense-convolution structure network model Dense-CUnet can be used to effectively modify the positive effect.Moreover,the Fuse-CUnet model that integrates multiple elements can greatly improve the revision effect.
作者 张延彪 陈明轩 韩雷 宋林烨 杨璐 ZHANG Yanbiao;CHEN Mingxuan;HAN Lei;SONG Linye;YANG Lu(Ocean University of China,Qingdao 266100,China;Institute of Urban Meteorology,CMA,Beijing 100089,China)
出处 《气象学报》 CAS CSCD 北大核心 2022年第1期153-167,共15页 Acta Meteorologica Sinica
基金 国家重点研发计划项目(2018YFF0300102) 北京市自然科学基金项目(8212025)。
关键词 数值天气预报 深度学习 偏差订正 融合订正 NWP Deep learning Deviation correction Fusion correction
  • 相关文献

参考文献5

二级参考文献57

共引文献155

同被引文献341

引证文献21

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部