摘要
目的探讨超低管电压(70 kVp)联合高权重深度学习图像重建(High-strength Deep Learning Image Reconstruction,DLIR-H)技术降低冠脉CT血管成像辐射剂量与对比剂用量的临床价值。方法收集72例临床拟行冠状动脉CTA检查的患者,随机分为A、B两组,各36例。A组扫描方案:70 kV,智能mA调节技术,噪声指数(Noise Index,NI)为30 HU;对比剂总量16 mgI/(kg·s),DLIR-H重建。B组扫描方案:120 kV,智能mA调节技术,NI为22 HU,对比剂总量32 mgI/(kg·s),50%自适应统计迭代重建。两组均以10 s的对比剂注射持续时间计算对比剂注射流速。对两组图像质量进行主观评分和客观评价。图像质量主观评分采用5分法,图像噪声、信噪比(Signal to Noise Ratio,SNR)和对比噪声比(Contrast to Noise Ratio,CNR)用于图像质量客观评估。结果两组图像质量主观评分满足诊断要求,A组图像质量的主观评分优于B组,差异有统计学意义(P<0.001)。A组的背景噪声标准差值(12.36±2.86)明显低于B组(19.06±2.43),差异有统计学意义(P<0.001);A组右冠状动脉(Right Coronary Artery,RCA)、左冠状动脉前降支(Left Anterior Descending,LAD)与回旋支(Left Circumflex,LCX)的SNR(36.40±11.71、35.01±10.95、35.32±11.33)明显高于B组(20.77±3.76、20.33±3.46、20.15±3.34),差异有统计学意义(P<0.001);A组RCA、LAD和LCX的CNR(48.47±13.61、47.08±12.72、47.38±13.12)明显高于B组(26.25±4.79、25.82±4.54、25.64±4.15),差异有统计学意义(P<0.001)。A组对比剂平均用量(22.87±4.06)mL和辐射剂量(0.82±0.15)mSv较B组(48.64±7.09)mL、(2.23±0.93)mSv分别降低了53%和63.2%。结论与传统扫描方案相比,超低管电压联合DLIR-H算法行CCTA扫描,图像质量优,患者接受的辐射剂量与对比剂总量均明显降低。
Objective To explore the clinical value of 70 kVp tube voltage combined with high-strength deep learning image reconstruction(DLIR-H)technology in reducing both radiation and contrast doses in coronary CT angiography(CCTA).Methods A total of 72 patients required to undergo CCTA were prospectively enrolled and randomly divided into two groups A and B,with 36 cases in each group.Group A(n=36)used the new scan protocol:70 kV,smart mA adjustment technolegy,noise index(NI)of 30 HU,contrast dose of 16 mgI/(kg·s),DLIR-H reconstruction.Group B used the conventional scan protocol:120 kV,smart mA adjustment technolegy,NI of 22 HU,contrast dose of 32 mgI/(kg·s),50%ASIR-V reconstruction.The contrast injection rate was adjusted for 10 s injection duration.The image quality of the two groups were evaluated subjectively and objectively.The subjective image quality was evaluated by 5-point system(5=best).Image noise,contrast-noise-ratio(CNR)and signal-noise-ratio(SNR)for vessels were measured to evaluate the objective image quality.Results The image quality in the two groups fully met the diagnostic requirements.The subjective score of image quality in group A was better than that in group B,and the difference was statistically significant(P<0.001).The standard deviation of background noise in group A(12.36±2.86)was significantly lower than those in group B(19.06±2.43),and the difference was statistically significant(P<0.001).The SNR in right coronary artery(RCA),left anterior descending(LAD)and left circumflex(LCX)in group A(36.40±11.71,35.01±10.95,35.32±11.33)were significantly higher than those in group B(20.77±3.76,20.33±3.46,20.15±3.34).The differences were statistically significant(P<0.001).The CNR of RCA,LAD and LCX in group A(48.47±13.61,47.08±12.72,47.38±13.12)were significantly higher than those in group B(26.25±4.79,25.82±4.54,25.64±4.15),the differences were statistically significant(P<0.001).The average contrast dose were(22.87±4.06)mL and radiation dose was(0.82±0.15)mSv in group A,which were 53%and 63.2%reduction compared with the(48.64±7.09)mL and(2.23±0.93)mSv in group B,respectively.Conclusion The use of 70 kVp tube voltage combined with DLIR-H algorithm for CCTA in normal size patients significantly reduces radiation dose and contrast medium dose while improves image quality compared with the conventional scan protocol.
作者
文雨婷
李万江
李真林
潘雪琳
帅桃
刘嘉丽
WEN Yuting;LI Wanjiang;LI Zhenlin;PAN Xuelin;SHUAI Tao;LIU Jiali(Department of Radiology,West China Hospital of Sichuan University,Chengdu Sichuan 610041,China)
出处
《中国医疗设备》
2022年第2期78-81,88,共5页
China Medical Devices
基金
四川省科学技术厅重点研发项目(2019YFS0522)。
关键词
计算机断层成像
冠状动脉CT血管成像
辐射剂量
对比剂
深度学习图像重建
computed tomography
coronary computed tomography angiography
radiation dose
contrast agent
deep learning image reconstruction