摘要
由于SVM在分类过程中需要计算测试样本与所有支持向量之间的核函数,故实时性较差。所以采用基于正则化的集成线性SVM分类方法,既实现了快速分类,又能避免过拟合情况的发生,融合CNN深度学习算法更体现其良好性能。
Since the SVM needs to calculate the kernel function between the test sample and all the support vectors during the classification process,the real-time performance is poor.Therefore,the integrated linear SVM classification method based on regularization not only achieves fast classification,but also avoids the occurrence of overfitting.The fusion of CNN deep learning algorithm more reflects its good performance.
作者
王国庆
李克祥
郑国华
邵卫华
夏文培
WANG Guoqing;LI Kexiang;ZHENG Guohua;SHAO Weihua;XIA Wenpei(Zhejiang Sostech Co.,Ltd.,Wenzhou,Zhejiang Province,325000 China)
出处
《科技创新导报》
2021年第27期87-89,93,共4页
Science and Technology Innovation Herald
基金
温州市重大科技创新攻关项目(项目名称:基于视频分析的电扶梯安全监控关键技术研发及应用,项目编号:ZG2020022)。
关键词
正则化
支持向量机
分类器
机器学习
Regularization
Support vector machine
Classifier
Machine learning